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ABSTRACT

Bulk DNA methylation profiling is widely used to study cancer epigenomics in clinical set-
tings. However, these measurements aggregate signals from malignant and non-malignant
cells, introducing composition-dependent confounding that complicates tumor-intrinsic
interpretation and cross-cohort analyses. While existing methods can estimate tumor purity
and, in some cases, correct methylation measurements, they are often constrained by cancer-
specific reference models, predefined probe sets, or limited adaptability to new datasets
and purity definitions. We present MONTE (Methylation-based Observation Normalization
and Tumor purity Estimation), a cancer label-free method for tumor purity inference and
CpG-resolved methylation purification from bulk DNA methylation data. MONTE learns
probe-wise relationships between observed methylation and tumor purity using a stabilized
linear model with empirical Bayes variance moderation and infers purity in new samples
via signal-to-noise weighted aggregation of probe-level effects, without requiring matched
normal samples or predefined probe sets. MONTE achieves robust purity estimation across
cancer types using a single pan-cancer model and can be efficiently recalibrated to specific
contexts through Bayesian transfer learning. MONTE provides a flexible, scalable, and
interpretable framework for both methylation-based tumor purity estimation and correction,
yielding tumor-intrinsic profiles for downstream analysis.

Introduction

DNA methylation is a major epigenomic modification that plays a central role in regulating gene expression
and maintaining cellular identity. These patterns are dynamically shaped by both exogenous environmental
exposures, such as smoking, and endogenous biological factors, such as age. In cancer, aberrant methylation
landscapes are a hallmark of tumorigenesis, often involving the silencing of tumor suppressor genes and ac-
tivation of oncogenic pathways, thereby promoting uncontrolled cell proliferation and tumor progression [1].
Interpreting these alterations in bulk tumor samples, however, is complicated by the fact that measured
methylation profiles reflect mixtures of malignant and non-malignant cell populations (e.g., immune and
stromal cells) [2].

Most cancer DNA methylation studies rely on bulk tumor samples, in which measurements aggregate
signals across heterogeneous cellular compositions. DNA methylation microarrays remain widely used in
both research and clinical settings due to their robustness and cost-effectiveness. These platforms quantify
methylation at hundreds of thousands of predefined genomic sites using probes that target cytosine-guanine
(CpG) dinucleotides. However, variation in tumor purity can introduce systematic differences in the observed
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Table 1. Comparison of MONTE with existing, executable DNA methylation tumor purity estimation methods.

Method
Property MONTE PureBeta [6] InfiniumPurify [5] PAMES [7]
Core capabilities
Purity estimation v/ 4 4 v/
Methylation purification v v v X
Data and annotation requirements
Does not require normal samples v 4 X X
Does not require cancer labels v X X X
Does not require predefined probe sets v v X X
Statistical modeling properties
Modeling framework OLS + EB OLS DMC DMC
Probe-weighting by statistical reliability SNR N/A N/A N/A
Transferability and usability
Transfer learning across datasets/purity definitions v X X X
Software availability Python R R R

Note: MEpurify and RF_purify are not listed because we could not obtain results from them (see Methods).
DMC: Differential methylated CpGs; EB: Empirical Bayes; OLS: Ordinary least squares; SNR: Signal-to-noise
ratio

methylation profiles. This compositional heterogeneity can bias downstream analyses, leading to spurious
or attenuated differential methylation signals and confounded clinical associations [3-5]. Accurate tumor
purity estimation followed by appropriate correction of methylation measurements is a critical prerequisite
for analyses that aim to recover tumor-intrinsic epigenetic signals.

Several approaches have been proposed to infer tumor purity from DNA methylation data, differing in their
core capabilities, data requirements, and modeling assumptions (Table 1). Methods such as InfiniumPurify [5],
MEpurity [8], and PAMES [7] rely on differential methylation between tumor and tissue-matched normal
references to identify cancer-associated CpG sites. Tumor purity is then estimated using summary statistics [5,
7] or mixture modeling [8] over these predefined, cancer-specific probe sets. While effective in supported
settings, these approaches require the availability of appropriate normal samples and are trained separately
for each cancer type, limiting their applicability in rare cancers or in cohorts lacking suitable normal
references. Other methods model probe-purity relationships directly using regression-based frameworks.
RF_purify [9] applies random forest regression to predict purity, but it requires an exact match to the probe set
used during model training, limiting robustness to probe filtering and cross-dataset application. PureBeta [6]
does not require predefined probe sets, but it combines probe-wise linear regression with a computationally
intensive mixture modeling procedure and requires cancer-specific model training. Pretrained PureBeta
models are currently available for only a small number of cancer types.

Importantly, tumor purity estimation alone can only identify samples with substantial non-tumor contami-
nation but cannot recover tumor-intrinsic DNA methylation signals. To make effective use of samples with
varying purity, purity information must be coupled with explicit correction of methylation measurements to
yield a CpG-resolved pure-tumor methylome, required for downstream analyses such as molecular subtyp-
ing [2, 10], regulatory interpretation [11], or integration with other omics layers [12, 13]. Only PureBeta [6]
and InfiniumPurify [5] currently support both estimation and correction, but both rely on fixed, predefined
reference models and purity assumptions that are tightly coupled to specific cancer types and data contexts.
These constraints limit adaptability across datasets and purity scoring frameworks, motivating the need for
more flexible and scalable approaches.
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Figure 1. Overview of MONTE. (Top) The pan-cancer model learns probe-purity relationships from data without the use
of cancer labels, then optionally refines these coefficients using Bayesian transfer learning on tissue-specific or external
datasets. (Bottom) MONTE predicts purity using weighted regression and purifies methylation values by removing
purity-associated signal. The resulting profiles better reflect pure-tumor methylation and improve downstream analyses.

Here, we present MONTE (Methylation-based Observation Normalization and Tumor purity Estimation),
a flexible and label-free framework for tumor purity estimation and methylation purification (Figure 1).
MONTE does not require matched normal samples, cancer type labels, or preemptive feature selection. It
models probe-wise relationships between the observed methylation and tumor purity using a regression
framework with empirical Bayes variance moderation, resulting in stabilized and uncertainty aware estimates
across heterogeneous datasets. Purity inference for new samples is performed via signal-to-noise weighted
aggregation of probe-level effects, enabling robust prediction even when only a subset of probes are available.
To extend beyond a single cohort or purity metric, MONTE incorporates Bayesian transfer learning, allowing
pretrained models to be efficiently recalibrated to new datasets or alternative purity scoring systems using
limited labeled data. MONTE's learned probe-purity relationships enable projection to complete tumor
purity, producing a CpG-resolved purified tumor methylome suitable for downstream analysis. Across
cancer and cross-dataset evaluations, MONTE achieves superior purity estimation accuracy compared to
existing methods, reduces confounded probe-purity correlations, and improves recovery of tumor-intrinsic
signals.

Results

A single MONTE model provides robust pan-cancer tumor purity estimation

MONTE estimates tumor purity from bulk DNA methylation data by aggregating probe-level associations
between methylation and purity learned in a pan-cancer setting (Figure 1). In this framework, probe-wise
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Figure 2. Purity estimation performance. (A) Pearson correlation between estimated and true tumor purity across cancer
types with MONTE ablations. (B) Pan-cancer MONTE predictions compared against true TCGA CPE purity values on
the TCGA test set (Pearson r: 0.865, MSE: 0.008). The top_n hyperparameter was selected through 5-fold cross-validation
on the training set, resulting in optimal top_n of 250. (C) Pearson correlation and mean squared error between predicted
and true purity as a function of number of probes in input samples showing performance robustness with any probe set
with larger than 1000 probes.

regression coefficients are estimated using ordinary least squares with empirical Bayes variance moderation,
and probes are weighted by their signal-to-noise ratio when inferring purity for new samples. An optional
top-N probe selection step is used to regularize estimation when large or heterogeneous probe sets are
available (see Methods).

We evaluated MONTE using DNA methylation data from The Cancer Genome Atlas (TCGA) [14], which
provides one of the largest publicly available DNA methylation resources spanning diverse cancer types. We
used Illumina HumanMethylation 450K data from TCGA samples with consensus purity estimates (CPE),
which integrate multiple purity measures derived from copy number, gene expression, DNA methylation,
and histopathology [2]. After quality control, this resulted in a dataset of 7,040 samples across 21 cancer
types. While CPE is an imperfect and potentially noisy proxy for true tumor purity and incorporates
methylation-based criteria, it provides a standardized reference that is commonly used for comparative
evaluation across methods. To mitigate concerns about circularity and data leakage, samples were split
into disjoint training and test sets using a 70%/30% split stratified by cancer type, and all evaluations were
performed exclusively on held-out test samples, notably without providing any cancer labels.

To understand how individual components of the MONTE framework contribute to robust purity estimation,
we performed an ablation analysis comparing alternative formulations of the same modeling framework,
including baseline ordinary least squares (OLS) regression, empirical Bayes-moderated OLS (Var), empirical
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Bayes with signal-to-noise (SNR)-based probe weighting, and the full MONTE model incorporating top-N
probe selection. Across cancer types, each successive component yielded significant improvements in purity
estimation accuracy as measured by Pearson correlation (Figure 2A, one-sided Wilcoxon signed-rank test;
MONTE vs OLS p=9.5e-7, MONTE vs Var p=1.4e-6, MONTE vs SNR p=4.5e-3). Although the magnitude
of improvement varies across cancer types, MONTE consistently matches or outperforms simpler variants
with no clear dependence on cohort size. Larger gains are observed primarily in cancers with lower baseline
OLS performance, suggesting that MONTE preferentially stabilizes purity estimation in more challenging
settings.

The full MONTE model achieves strong agreement with reference purity values on the held-out test set
(Figure 2B; Pearson r=0.865, MSE=0.008), demonstrating that a single pan-cancer model can accurately
estimate tumor purity without using cancer labels. To assess robustness to probe availability, we further
evaluated MONTE using randomly subsampled input probe sets across several orders of magnitude, with
five random seeds per setting. Performance improves rapidly as the number of probes increased and
stabilized within a few thousand probes (Figure 2C), corresponding to <1% of the ~450K probes captured
on the array, showing that MONTE is robust to substantial probe filtering and does not rely on predefined
probe panels.

MONTE improves the accuracy and scalability of pan-cancer tumor purity estimation

We next compared MONTE with existing DNA methylation-based tumor purity estimation methods to
assess accuracy, coverage, and computational scalability in a pan-cancer setting (Figure 3). For methods
that rely on cancer-specific reference models or probe sets, we evaluated performance under two settings:
pretrained and dataset-fitted. In the pretrained setting, methods were applied using provided reference
models or probe sets, reflecting their intended out-of-the-box usage, though we note that both methods use
TCGA data for training, so inevitably may overlap with the test samples. In the dataset-fitted setting, methods
were trained using the same TCGA training split used for MONTE, providing a best-case comparison under
matched data availability. All methods were evaluated on the same TCGA test samples (held out from
MONTE and the dataset-fitted settings).

Across cancer types, MONTE achieves consistently stronger performance than competing methods in
nearly every cancer type where direct comparison is possible (Figure 3A). Specifically, MONTE significantly
outperformed PAMES (difference in medians = 0.288, Wilcoxon p = 2.44 x 10~%), and both variants of
InfiniumPurify (difference in medians = 0.145 (dataset-fitted) and 0.114 (pretrained), Wilcoxon p = 4.88x10~*
and p = 9 * 1075). The performance gain relative to PureBeta was also positive (differences in medians =
0.269 (dataset-fitted) and 0.057 (pretrained)) though statistical testing was not performed due to the limited
number of cancer types for which PureBeta models were available (n=3). Notably, MONTE achieves this
performance using a single pan-cancer model applied uniformly across all cancer types, whereas existing
approaches rely on cancer-specific reference models or probe sets that limit their generalizability.

We further evaluated the computational scalability of MONTE relative to existing methods for purity
estimation using pretrained models as well as fitting and estimating purity with a given input dataset
(Figure 3B). In both scenarios, MONTE and InfiniumPurify had comparable, efficient runtimes, whereas
PureBeta required significantly more computation, reflecting the higher cost of its mixture modeling-
based fitting procedure (median runtimes, pretrained-dataset-fitted: MONTE, 0.025-3.79m; InfiniumPurify,
0.09s-1.79m; PAMES, 0.029s-n/a; PureBeta, 8.6m-25.9h). In the dataset-fitted setting, MONTE requires only
a single pan-cancer model fit followed by rapid purity estimation across all cancers, resulting in substantially
lower total runtime for the full dataset (3.113m). In contrast, PureBeta and InfiniumPurify require cancer-
specific fitting procedures and correspondingly higher cumulative computational cost when applied at scale
(79.965h and 22.513m, respectively).
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Figure 3. Benchmarking the performance of purity estimation against existing methods. (A) Test-set purity correlation
by TCGA cancer type comparing MONTE (pan-cancer), PAMES, PureBeta, and InfiniumPurify. Pretrained models use
method-provided models and DMCs to estimate purity, and dataset-fitted models estimate using model and DMC fitted
on our data split. MONTE pan-cancer outperform others in most cancers, with noticeable gains in cancers with limited
training samples such as OV. (B) Pretrained estimation time (left) shown as function of number of test samples per cancer
for each method. Dataset-fitted runtime (right) shows the total time required to estimate purity for the entire test set
across all cancers for each method with fitting functionality.

Bayesian transfer learning enables methylation purification across cancer types and cohorts

While the pan-cancer MONTE model provides accurate tumor purity estimates, Bayesian transfer learning
allows the model to be further adapted for methylation purification and for application to datasets with
differing purity definitions. This framework updates probe-level coefficients from a pan-cancer prior using a
limited number of samples with known purity, enabling context-specific recalibration without retraining the
model from scratch. To evaluate methylation purification in a cancer-specific setting while avoiding data
leakage, we examined TCGA-BRCA, LUAD, and LUSC using different pan-cancer priors constructed from
training data excluding the target cancer (see Methods). These cancer types were selected because they were
the only ones available for both PureBeta and InfiniumPurify.

In BRCA, purification with MONTE sharpens the distribution of probe-purity correlations by pulling
correlations toward zero (Figure 4A). This behavior is consistent with the expectation that once tumor and
non-tumor component are disentangled and adjusted for pure tumor, probe-level methylation should no
longer track sample-level purity. For a more systematic evaluation, probes were stratified by their unadjusted
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Figure 4. Methylation purification. (A) Distribution of probe-purity correlations in BRCA before and after purification.
Purification collapses purity-dependent variation while preserving biological signal, producing a tighter distribution
centered near zero. (B) Probes grouped by their unadjusted purity correlation, comparing the correlation after purification
using MONTE, PureBeta, and InfiniumPurify. MONTE consistently produces the largest reduction toward zero across
all correlation bins. (C) Purity estimation performance of MONTE before and after Bayesian transfer learning on external
PCAWG-PRAD dataset. Bayesian transfer learning calibrates to different purity measurements and provide performance
gain in purity estimation. (D) Purity estimation performance as a function of sample size in Bayesian transfer learning
on PCAWG-PRAD. Bayesian transfer learning stabilizes in performance after sample size of 14.

purity correlations, and we quantified the extent to which each method reduced these correlations (Figure 4B).
Across all correlation bins, MONTE consistently produces the strongest reduction toward zero, with the
largest adjustments occurring for probes that were most strongly confounded by purity in the unadjusted
data. These trends were also observed in LUAD and LUSC (Supplementary Figure 1).

To assess whether MONTE’s Bayesian transfer learning generalizes to external cohorts, we evaluated it on
data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) [15, 16]. PCAWG provides a well-controlled
setting for evaluation because a subset of samples overlaps with TCGA but is annotated with purity estimates
based on copy number variation, which differ systematically from TCGA’s CPE measure. These overlapping
samples enable direct assessment of model behavior before and after recalibration to an alternative purity
definition. To avoid leakage, all overlapping samples between TCGA and PCAWG were excluded from
the pan-cancer prior construction as well as samples used for transfer learning and used exclusively for
evaluation. We find that Bayesian transfer learning recalibrates probe-level coefficients to better align with
the external purity definition while retaining information from the original model, correcting systematic
offsets and substantially improving agreement with PCAWG purity estimates (Figure 4C).

We further examined how recalibration performance changes as a function of the number of samples used
during Bayesian transfer learning. Both correlation and MSE compared with PCAWG purity values improve
rapidly as the number of calibration samples increases, with substantial gains achieved using as few as
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Figure 5. Purification increases cancer marker effect sizes and biological signal consistency. (A) Median spearman
correlation of differential methylation effect sizes across cancer types between 5 iterations of randomly divided halves.
Calculated for cancer types with larger than 5 samples in both test and normal sample sets (n cancers=13) and shows
improved consistency in purified profiles. (B) Change in BRCA-normal breast differential methylation effect sizes in
known BRCA marker gene promoters compared to non-markers (n CpGs=865). Statistical significance was calculated by
comparing to 5,000 permutations of random non-marker promoter CpG sets of same size (n=865), and one representative
iteration is shown (***: permutation p-value<le-3.)

20 samples and stabilizing soon after (Figure 4D). The sample-efficient behavior reflects the fact that the
pan-cancer prior already captures genome-wide relationships between DNA methylation and tumor purity,
allowing effective adaptation to alternative purity definitions with limited cohort-specific data.

Methylation purification enhances tumor differential methylation signal and consistency

We first examined the impact of methylation purification on the consistency of differential methylation
analyses across cancer types. For each cancer, tumor samples were randomly divided into two equal halves
(five random seeds), and differential methylation against normal samples was computed independently
for each split using both purified and unadjusted methylation profiles. Concordance between splits was
quantified using Spearman correlation of probe-level effect sizes, and median correlations were compared
before and after purification. Across almost all cancer types, purification increased concordance, with the
exception of KIRC (with a modest decrease from 0.964 to 0.941), indicating improved reproducibility of
differential methylation effects (Figure 5A). Notably, THCA saw the largest increase in concordance (from
0.892 to 0.952). The relatively large improvement post-purification on concordance in THCA may be due to
its high immune infiltration rate [17].

Having established improved consistency across cancers, we next asked whether methylation purification
also enhances recovery of biologically meaningful tumor-specific signal. We focused on BRCA, where
well-characterized breast cancer marker genes are available, and performed differential methylation analysis
between the full test set of tumor versus normal samples pre- and post-purification. For each CpG site, effect
size differences were calculated as the change in absolute differential methylation coefficients between the
two settings. CpGs located in the promoter regions of literature-curated breast cancer marker genes [18]
exhibited significantly larger increases in differential methylation effect sizes compared to size-matched
CpGs from promoter regions of non-marker genes (p=1.99e-4; Figure 5B), demonstrating the amplification of
tumor-relevant regulatory signal following purification.

Discussion

In this study, we present MONTE, a unified framework that addresses several long-standing challenges in the
analysis of bulk DNA methylation data by jointly enabling accurate tumor purity estimation, CpG-resolved
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methylation purification, and flexible adaptation across cancer types and datasets. MONTE extends classical
linear modeling approaches by incorporating probe-wise empirical-Bayes variance moderation and signal-to-
noise weighting, stabilizing effect estimates across heterogeneous CpGs. Compared to existing approaches,
MONTE provides improved accuracy and broader applicability while remaining computationally efficient
and interpretable.

A key feature of MONTE is the ability to operate as a single pan-cancer model without requiring tumor labels
or normal samples, achieving strong out-of-the-box purity estimation performance across diverse cancer
types. Bayesian transfer learning further extends this framework by allowing probe-purity relationships to
be recalibrated using limited samples in new contexts without retraining the model from scratch. This design
is particularly advantageous for underrepresented and external cohorts, where large reference datasets may
not be available. Beyond purity estimation, MONTE enables CpG-resolved purification of methylation
profiles, facilitating downstream analyses aimed at recovering tumor-intrinsic epigenetic signal.

As with any modeling framework, MONTE operates under a set of assumptions that define its current
scope. The method models bulk methylation measurements as a linear combination of tumor and non-tumor
signal, corresponding to a two-component mixture. This abstraction is intentionally simple, capturing the
dominant source of confounding in bulk tumor data while remaining interpretable and data-efficient. Never-
theless, more expressive extensions, such as explicit modeling of multiple non-malignant compartments
or incorporation of uncertainty in purity estimates, could further refine this framework and enable deeper
understanding of tumor-microenvironment interactions.

More broadly, MONTE provides a statistical scaffold for integrating DNA methylation data. Although
our analyses have focused on array-based methylation data here due to its broader availability, MONTE’s
design is not platform-specific and could be extended to sequencing-based assays through the same transfer
learning framework. Thus, MONTE is particularly well-suited for integrative cancer epigenomics studies
across heterogeneous data to more effectively understand tumor-intrinsic epigenetic signal at scale.

Methods

Data preprocessing

Sample downloading and curation. All publicly available DNA methylation data from The Cancer Genome
Atlas (TCGA) [14] were collected using the TCGADbiolinks package [19] in R. For each TCGA project, lllumina
HumanMethylation450 (450K) beta values processed and normalized by the TCGA consortium were used
directly. Samples without CPE purity annotations were excluded from analysis. CpG probes with missing
beta values or located on sex chromosomes were excluded, following best practices for quality control [20].
For pan-cancer modeling, the intersection of probes across all projects with purity annotations was used.

Sample partitioning. For the pan-cancer model, we used a 70:30 train-test split stratified by cancer type. For
cancer-specific modeling with Bayesian transfer learning, samples were partitioned further into train:val:test
sets, where the cancer-specific train set had train samples from non-target cancers and the cancer-specific
validation and cancer-specific test sets respectively contained train and test samples of the target cancer
(Supplementary Table 1). To remove the possibility of data leakage from physiological or tissue-of-origin
resemblance, related cancer types were grouped during prior construction, including cancers of the digestive
tract (COAD and READ), kidney (KIRC, KIRP, and KICH), uterine (UCEC and UCS), brain (GBM and LGG),
and lung (LUAD and LUSC).

External datasets. We used data from the PRAD-CA project from the Pan-Cancer Analysis of Whole
Genomes (PCAWG) cohort [15, 16] as an external validation, which provides 450K data with purity estimates
derived from whole-genome sequencing (WGS). Only donors with a single tumor WGS sample was used to
ensure one-to-one correspondence between methylation and purity measurements.
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Model design of MONTE. MONTE models probe-wise associations between bulk DNA methylation
and tumor purity using a linear regression framework. Let X € R"™*™ denote centered methylation
measurements (can be beta or M-values) for n samples and m CpG probes, and let p € R™ denote the vector
of centered tumor purity values. For each probe j, MONTE fits a linear model:

Xij = o5+ B;pi + €ijs ey

where «;, 3; are probe-specific intercept and coefficient parameters, and €; ~ N (0, ¢;) is the probe residual
error and the ¢ is population variance for the probe j. Probe-wise coefficients are estimated using ordinary
least squares (OLS), treating tumor purity as the independent variable and methylation values as the
response.

To stabilize estimates across heterogeneous probes and variable sample sizes, MONTE applies empirical
Bayes variance moderation to the OLS residual variances, shrinking probe-specific variance estimates toward
a shared prior. As in limma [21], we assume that the population variance of each probe, ¢;, is drawn from a
prior distribution, an inverse chi-squared distribution:
2
S do

o2 ~ 5000 @)
Xdo
where s is the pooled variance estimate and dj is the prior degrees of freedom.

The expectation of the probe’s variance o, given the observed variance s; is
J J

. dosg + d]5§
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where d; is the degrees of freedom for the probe. Using the posterior variance s
moderated t-statistics for each probe
B,

t; =
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)

Purity estimation with signal-to-noise (SNR) weighting. Given new samples with methylation measure-
ments X’ € R *™ where n’ is the number of samples and m' is the number of features, MONTE estimates
tumor purity using the intersection of probes between the trained model and the input data, allowing
pre-trained models to be appleid across datasets with partially overlapping probe sets. After centering
X' using training set means, sample-wise purity estimates can be solved using a weighted least squares
objective function

p = arg min Z w; (X, — Bip — &;)?, (5)

PER oM

where M, denotes the intersecting probe set.

MONTE uses signal-to-noise (SNR) [22] based weights
5

)
Sj,post

wj = (6)
which upweight probes with strong purity association and low residual variance while downweighting
noisy or weakly associated probes. This yields the closed-form purity estimator
e, il (X — dy)
pi = = : @)
2 jemn Wibi
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To reduce the influence of probes weakly associated with purity, MONTE optionally restricts purity estima-
tion to the top n probes ranked by their moderated t-statistics. The number of probes can be specified by the
user or selected via a built-in cross validation function. This built-in function automatically runs k-fold cross
validation (default: k=5) on the training set across a set of n values (default: 5, 10, 25, 50, 100, 250, 500, 1000,
2500, 5000, 10000, 25000, 50000, 100000, 150000) and returns the n that corresponds to the lowest average
mean squared error across folds.

Bayesian transfer learning. MONTE supports adaptation to new datasets through Bayesian transfer
learning, which updates probe-level purity coefficients using limited samples with known purity. We assume
a Gaussian distribution on Bj(-t) for probe j in the new dataset, Bj(-t) ~ N (Bf 0T 72), where 72 captures the
uncertainty of the pan-cancer coefficient estimate for probe j.

Given a target dataset with labeled samples, probe-level coefficients B 3 and associated variance O'(t)

estimated using the same linear model. The posterior distribution of Bj thus has the closed-form mean

post _ B7 /T4 3, Xl o2
’ RS ST

®)

and variance,

-1
ost 1 ]- 2

This update corresponds to a precision-weighted combination of the pan-cancer prior and the target-specific
estimate, allowing probe-purity relationships to be recalibrated efficiently without retraining the model from
scratch.

Purification of methylation values. MONTE enables CpG-resolved purification of bulk DNA methylation
profiles by adjusting observed methylation values to a target tumor purity. Given estimated sample purity p
and probe-level coefficients (3;, methylation values for sample ¢ and probe j are adjusted as

X sjustea = Xt + B3 (0f = D), (10)

where p’ denotes the target purity, typically set to 1 to obtain a pure tumor methylation profile. This
adjustment corresponds to projecting each probe’s methylation value along its estimated purity-associated
direction to the desired purity level. The operation is applied efficiently in matrix form across all probes and
samples. Because not all probes are necessarily strongly associated with tumor purity, MONTE provides
optional controls to restrict purification to informative probes based on probe-level significance thresholds.
MONTE also provides easy access to detailed probe statistics that include confidence intervals, allowing
users to assess the reliability of individual adjustments. These optional adjustments were not used for the
results shown in the paper but allow purification to be tailored to the desired balance between sensitivity
and robustness.

Differential methylation, effect size, and subset concordance.

Differential methylation (DM) was performed using the methylize [23] package in Python (v3.13.3). Significant
probes were defined using FDR-adjusted p-values (< 0.05). CpGs were mapped to promoter regions (+1.5
kb from transcription start sites) using the hg38 manifest [20].

For each CpG probe, tumor—normal effect sizes were obtained from the linear DM coefficient. Absolute
effect size changes were calculated as the difference between purified and unadjusted coefficients. Cancer
marker genes were obtained from MethMarkerDB [18]. Marker-associated CpGs were defined as probes
mapped to promoters of curated marker genes. To assess whether marker CpGs exhibited larger effect
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size increases than compared to those of random non-marker sets, a permutation test was performed by
randomly sampling non-marker probes 5,000 iterations.

To assess the consistency of DM results between purified and unadjusted methylation, test tumor samples
were randomly split into two halves five times for each cancer type. For each split, DM was performed
against normal samples using methylize [23]. Only cancer types with at least five tumor and five normal
samples were included. Concordance between splits was quantified using Spearman correlation of effect
sizes. Median correlation across iterations was compared between unadjusted and purified data.

Existing purity estimation and purification methods

We compared MONTE against three existing DNA methylation array-based tumor purity estimation tools
and their corresponding beta value purification procedures: PAMES [7], InfiniumPurify [5], and PureBeta [6].
All methods were run using pretrained and dataset-fitting modes following recommended settings whenever
possible. We note that all methods include TCGA data in their training, so the pretrained models inevitably
have the advantage of being trained on some of the testing samples.

PAMES was evaluated using the provided informative probe collections, which supports 12 cancer types
(BLCA, BRCA, COAD, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, THCA, UCEC). PureBeta under
both pretrained and dataset-fitted settings. Pretrained models used the precomputed regression parameters
provided for BRCA, LUAD, and LUSC. Dataset-fitting was also performed for these same cancer types, which
the authors have described as satisfying the method’s modeling assumptions. For InfiniumPurify, pretrained
analyses were restricted to tumor types supported by the package so READ was missing, but as suggested in
the method documentation, we used the COAD model for READ predictions. In the dataset-fitting setting,
model fitting required at least 20 tumor and 20 normal samples, which limited applicability in rarer cancer
types with small sample sizes. Beta value purification also required at least 20 normal samples, restricting
the number of cancer types that we could compare against.

We additionally attempted to evaluate RF_purify [9] and MEpurity [8]; however, RF_purify could not handle
missing values introduced during standard quality control, and MEpurity produced empty outputs when
run according to the provided documentation. These methods were therefore excluded from further analysis.

Data and code availability
Our implementation of MONTE package is available on GitHub at https://github.com/ylaboratory/

MONTE, with additional analysis code and tutorials available at https://github.com/ylaboratory/
MONTE-analysis, both released under the BSD 3-clause license for open source use.
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