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Integrating single-cell RNA sequencing with Genome-Wide Association Studies
(GWAS) can uncover cell types involved in complex traits and disease. How-
ever, current methods often lack scalability, interpretability, and robustness.
We present seismic, a framework that computes a novel specificity score
capturing both expression magnitude and consistency across cell types and
introduces influential gene analysis, an approach to identify genes driving each

cell type-trait association. Across over 1000 cell-type characterizations at
different granularities and 28 polygenic traits, seismic corroborates known
associations and uncovers trait-relevant cell groups not apparent through
other methodologies. In Parkinson’s and Alzheimer’s, seismic unveils both cell-
and brain-region-specific differences in pathology. Analyzing a pathology-
based Alzheimer's GWAS with seismic enables the identification of vulnerable
neuron populations and molecular pathways implicated in their neurode-
generation. In general, seismic is a computationally efficient, powerful, and
interpretable approach for mapping the relationships between polygenic traits
and cell-type-specific expression, offering new insights into disease

mechanisms.

Genome Wide Association Studies (GWAS) have shown exceptional
promise for identifying genetic variants across populations that are
key contributors to human diseases and a range of phenotypic traits.
Simultaneously, the rise of large-scale single-cell RNA sequencing
(scRNA-seq) datasets has revolutionized our ability to analyze gene
expression profiles at the level of individual cell types and states. These
advancements present a unique opportunity to integrate the
population-level genetic associations revealed by GWAS with the
molecular precision offered by scRNA-seq to pinpoint specific trait-
associated cell types. Intuitively, a natural way to unify these datasets is
to aggregate trait-associated variant statistics from GWAS at the gene
level, which can then be subsequently analyzed for cell-type specificity
using scRNA-seq.

Several computational methods have been developed to identify
trait-associated cell types'® by integrating reference scRNA-seq atlases
with single-nucleotide polymorphism (SNP)-level association statistics

derived from GWAS. We focus on the major class of methods that use
MAGMA’ to convert SNP-level GWAS associations into gene-level sta-
tistics while accounting for the complexities of linkage disequilibrium.
The MAGMA software itself can be adapted to analyze cell type-trait
relationships>® via gene set enrichment analysis, which we term
S-MAGMA (see Methods) to avoid confusion with the upstream linkage
disequilibrium correction process. Broadly, these MAGMA-based
methods have been successfully used to help elucidate disease-
associated cell types***°, but several technical limitations remain
(Table 1). One such limitation is the requirement of arbitrary thresh-
olds, either for selecting the number of genes associated with a GWAS
trait (e.g., top 1000 trait-associated genes as in scDRS'), genes to
characterize a cell type (e.g., top 10% most specific genes for
S-MAGMA?® as used in'®), or a score threshold for cell-type association
enrichment (e.g., 5% score quantile as in scDRS"). Biologically, these
numbers would naturally vary case-by-case, and most methods
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Table 1| Comparison of seismic with other MAGMA-based
cell-type association methods

seismic scDRS FUMA S-MAGMA

No gene thresholding based on v 4 v/
trait association

No gene thresholding based on v v 4

cell-type expression

Accounts for gene expression v v

variability

Scalable runtime v v v
Tool includes results visualizations v/ v v
Identifies cell-type level influen- v

tial genes

recommend trying several. Methods also often fail to account for gene
expression variability, focusing instead more simply on mean expres-
sion within a cell type, rendering them more susceptible to noise.
Furthermore, as the size of single-cell datasets continues to grow,
scalability becomes a major concern, necessitating a method that can
handle large numbers of cells and cell types. Finally, a critical gap in
previous methods is that though they may identify several significant
cell type-trait associations, they only output statistical significance
without further gene-level interpretation. Although some methods
attempt to resolve the issue using global correlation' or modularity
analysis®, they fail to quantify each gene’s contribution to the observed
significance association of an interested cell type, limiting the action-
able insights to be derived from these analyses.

Here, we present seismic, a framework that enables robust and
efficient discovery of cell type-trait associations and provides the first
method to simultaneously identify the specific genes and biological
processes driving each association. Notably, seismic eliminates the
need to select arbitrary thresholds to characterize trait or cell-type
association through the use of a cell-type-specificity scoring method
that accounts for background gene expression variability. We apply
seismic and existing MAGMA-based cell-type association methods on
both simulated and real data to demonstrate that seismic is well-cali-
brated, efficient, and powerful.

Through a deep exploration of neurological disease-associated
brain cell types, we find that cell type definition from input scRNA-seq
data is an important, yet currently underappreciated, factor that
influences downstream findings. Previous studies®***? have typically
used broad characterizations of cell types, such as “telencephalon
projecting excitatory neurons” and “frontal cortex neurons,” without
accounting for finer regional or tissue-specific distinctions. This coarse
characterization can obscure valuable biological insights, especially
when cell diversity is high. While broad cell type characterizations may
be adequate when studying relatively homogeneous cell populations
(e.g., microglial cells in the brain), this approach falls short for highly
diverse cell populations like neurons. For instance, neurodegenerative
diseases preferentially target neurons with very distinct regional and
cell type identities. In Alzheimer’s disease, neurons in the entorhinal
cortex are especially vulnerable, whereas neurons in even neighboring
brain regions, such as the dentate gyrus and CA2/CA3 in the hippo-
campus, are not”. We show that using finer granularities for cell type
characterization reveals more specific cell-type trait links, which better
reflects true biological mechanisms. Notably, seismic consistently
outperforms other methods in identifying disease-associated cell
types across these different cell type characterizations. Furthermore,
we demonstrate the importance of considering different GWAS end-
points to reveal disease mechanisms, reporting, to our knowledge, the
first computational identification of a neuronal association with an
Alzheimer’s disease biomarker (tau level in cerebrospinal fluid).
Together, our results expand current notions of best practices for cell
type-trait association analyses and provide a methodological toolkit to

take fuller advantage of both scRNA-seq and GWAS data to unravel the
intricate interplay between tissue/cell type and complex traits.

Results

Identifying cell type-trait associations using seismic

Many cell-type-trait association methods consider the same inputs—
variant-trait information from GWAS resolved to gene-trait relevance
using MAGMA’ and single-cell expression data—to find statistically
significant associations between cell types and traits (Fig.1A). How-
ever, these methods may rely on arbitrary gene thresholds or cell-type
mean expression profiles to identify trait-implicated cell types
(Table 1), without accounting for the global relationship of cell type
specificity and disease risk. Here, we introduce a novel integration
framework, Single-cell Expression Integration System for Mapping
genetically Implicated Cell types (seismic), that overcomes the limita-
tions of previous methods to provide a threshold-free, fast, and
interpretable method for combining single cell expression data with
gene-trait relationships (Fig. 1B).

At the core of seismic is a cell type-specificity score (“Methods”),
which calculates the specificity and consistency of expression for each
gene in a cell type relative to all other cell types. The seismic specificity
score is designed to compare the relative probability of a gene in a cell
type with consistently higher expression than background cells among
all cell types (“Methods”), thus providing a global view of gene speci-
ficity in a cell type. We empirically assess these scores in various pan-
creatic cell types in the Tabula Muris FACS datasets™. Even though
these cell types exhibit highly correlated expression patterns, we find
that established marker genes® are all ranked among the highest in
their corresponding cell types (Supplementary Fig. 1A, B). Moreover,
marker genes consistently show significantly higher specificity scores
in their target cell types compared to those same marker genes in non-
pancreatic cell types or housekeeping genes across all cell types
(Supplementary Fig.1C), highlighting the score’s ability to capture
biologically meaningful cell-type-specific patterns.

The seismic specificity score is also robust to different char-
acterizations of cell types, whether it is broader groupings or more
specific subclusters, as it is robust to arbitrary re-labeling of homo-
geneous populations, while exploiting genuine substructure to
achieve high resolution in identifying trait-associated cell types
(Supplementary Notel, Supplementary Fig.2). Furthermore, the
seismic specificity score demonstrates robustness to noise in cell
cluster characterizations. In real-world datasets, cell type annota-
tions derived from unsupervised clustering and subsequent manual
curation can inevitably contain some mislabeled cells or mixtures of
closely related cells'®. Through a label permutation simulation, we
find that the seismic specificity score shows superior resilience to cell
type label noise compared to other common specificity metrics
(Supplementary Fig.3), demonstrating that the cell type specificity
profiles are relatively less sensitive to slight inaccuracies in upstream
cell type definitions.

After calculating the seismic specificity score for a collection of
cell types in a scRNA-seq dataset, the seismic framework then applies a
regression model to test for significant associations between the spe-
cificity scores and MAGMA gene z-scores, under the assumption that
the genetically implicated cell types specifically expresses more of
these genes with higher trait relevance (“Methods”). For significantly
associated cell types, the seismic framework also introduces influential
observation analysis to the corresponding regression model, enabling
what we term ‘influential gene analysis.” To our knowledge, influential
gene analysis is the first method to systematically rank and identify
genes driving purported cell type-trait associations.

Systematic benchmarking and runtime analysis
To assess how well seismic and three of the most commonly used cell
type-trait identification methods (scDRS', FUMA?, and S-MAGMA?®) are
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Fig. 1| General framework for identifying cell type-trait associations and
overview of seismic. A Current approaches for computationally linking cell types
to trait typically integrate single-cell expression data with gene-trait associations
from MAGMA to prioritize genetically susceptible cell types by statistical sig-
nificance. Each method has a different procedure for how these inputs are com-
bined to produce the final set of identified associations. B The seismic framework
expansion of this general workflow. seismic allows for a flexible set of cell type
labels or granularities, ranging from broader cell classes to specifically defined cell
types, before calculating a novel gene specificity score for each of the

corresponding cell characterizations, capturing both the magnitude and con-
sistency of gene expression. These cell-type-level gene specificity scores are then
integrated with MAGMA z-scores using a regression model to assess the statistical
significance of cell type-trait associations, under the assumption that disease-
critical genes are more specific to the implicated cell type (see “Methods”). Unlike
existing methods, individual gene contributions to the cell type-trait association
can be quantified via influential gene analysis and can pinpoint the genes and
underlying biological processes that drive significant associations.

calibrated to false positives, we perform a systematic simulation to
detect the frequency of type | errors. We first randomly select 10 sets of
MAGMA trait z-scores from GWAS (Supplementary Datal) and sub-
sample 10 expression datasets, each containing 10,000 cells from the
Tabula Muris (TM) FACS scRNA-seq data” (Supplementary Data 2). For
each subsampled expression dataset, we randomly select 100 cells as a
cell type of interest (“Methods”). Next, across 10,000 runs, we ran-
domize the gene labels in the expression data and compare the p-
values reported by each method for the association between the ran-
domly assigned target cell type and trait. We find that all methods
generally control type I error, with FUMA being markedly conservative,
potentially limiting its detection power. seismic is, on average,

conservative and has stable performance. In contrast, using the ana-
lytically transformed p-values from scDRS, we see slightly inflated p-
values at extreme quantiles, and S-MAGMA can also, at times, report
inflated p-values (Fig.2A). The seismic and scDRS implementations
enable examination of the effect of randomization of MAGMA trait z-
scores, and we observe the same trends, where seismic still has gen-
erally well-calibrated p-values, and scDRS has slight inflation at tail
quantiles (Supplementary Fig. 4).

Complex, polygenic traits frequently involve multiple disease-
associated cell types and subtle expression perturbations across a
large number of genes'®?°. In order to evaluate the extent to which
seismic can correctly identify trait-associated cell types reflective of
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Fig. 2| Systematic benchmarking results for seismic and three other commonly
used MAGMA-based methods for cell type-trait association detection.

A Assessment of type | error calibration for seismic, scDRS', FUMA?, and S-MAGMA’.
Results are based on random cell type assignments and expression datasets across
10,000 simulation runs with 10 randomly selected traits and 10 subsets of 10,000
cells (Methods). P-values are calculated using each method’s default analysis set-
tings as described in Methods. Quantile-quantile plots show the comparison

of expected —log,,(p—value) quantiles (the dashed line) in comparison with
observed —log;,(p—value) quantiles. The solid line represents the mean of
observed —log;,(p—value) quantiles across the 10 random traits, while the shaded
ribbon represents the mean + one standard deviation (SD) of the value. The dashed
line represents theoretically perfectly calibrated p-values, and observations falling
below this line indicate that p-value estimates are more conservative.

B Comparative power analysis of cell type-trait association methods under four
different gene sampling strategies. To simulate a complex disease, we designate 3
random cell types as causal. Four gene sampling strategies were deployed to
simulate the cell types with different correlation patterns (see Methods for details).
We examine power in two ways: (top) the mean frequency across 10 random traits

where the 3 perturbed cell types with trait-specific expression are identified as
significantly associated across 10 independent simulations (FDR < 0.05), and (bot-
tom) the ratio of simulations where the top associated cell type is one of the 3
causal cell types. Each dot summarizes the frequency of 10 expression and target
cell type randomizations for a random trait, while bars and error bars represent the
mean and the range of mean + standard deviation across n =10 random traits.
Results are shown over varying effect sizes, or expression fold changes (in

log2 scale), with 50% of perturbed genes designated as causal. C Relative precision-
recall curves showing log,( precisionoverrandom), illustrating the power of seis-
mic's influential gene analysis to identify simulated causal disease genes at different
effect sizes. The metric is calculated as the mean precision divided by the random
prior across simulations at each level of recall, when 50% of perturbed genes are
causal disease genes. D Total runtime in seconds (log scale) for each method to
identify associated cell types for a trait in scRNA-seq datasets of various sizes
(number of cells). Each data point represents the mean runtime from 5 independent
runs, with error bars denoting the range of mean + one standard deviation. Each of
the runs was performed on a different dataset generated by subsampling (or
upsampling) cells from the Tabula Sapiens® dataset to the specified numbers.

this complexity, we simulate several different scenarios: (1) single or
multiple associated cell types; (2) distinct or overlapping genes driving
the trait association across cell types; (3) strong or subtle expression
perturbations linked with the trait. We use scDesign3” to generate
realistic synthetic count-level data that mimics trait-specific expres-
sion perturbations at different effect sizes (“Methods”). Applying the
four methods to this simulated data, we compare their power to cor-
rectly identify the perturbed cell types as trait-associated by calculat-
ing the proportion of simulations where the perturbed cell types are
significantly associated with the trait (FDR < 0.05), as well as whether
the highest-ranked cell type is a correct association. seismic con-
sistently has the highest power of all methods across scenarios and

effect sizes (Fig. 2B and Supplementary Figs. 5, 6). Interestingly, scDRS
is also relatively powerful at higher effect sizes but deteriorates in the
challenging scenario where the expression perturbation is milder. In
contrast, FUMA and S-MAGMA both show limited power across most
scenarios (Fig. 2B); while the correct disease-associated cell type rarely
reaches statistical significance, they are at times ranked highly.
Focusing on the situation where there is only a single causal cell type,
we also simulate different types of polygenic signals by varying the
ratio of causal genes to confounding genes. We observe that FUMA and
S-MAGMA still have lower power in this simpler scenario. scDRS is
somewhat underpowered when effect sizes are small, even if there are
a large number of causal genes, but it is powerful in the rarer scenario
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where there are fewer causal genes of very high effect size. seismic is
consistently powerful, especially in detecting associations when many
genes are involved, even if the expression perturbations are subtle
(Supplementary Fig. 5).

To further complement the power simulation and examine
robustness to false positives, we also quantified the frequency that the
non-perturbed cell types (cell types without simulated trait-specific
signals) reach a nominally significant statistical significance. seismic
still maintained well-controlled false positive ratios consistent with the
expected theoretical threshold (Supplementary Fig. 7) across multiple
traits whose GWAS exhibit diverse sample sizes and genetic archi-
tectures. This analysis further confirms that seismic’s enhanced power
does not come at the cost of inflated type I error.

Beyond accurate, sensitive identification of causal cell types,
seismic’s novel influential gene analysis prioritizes the causal genes
that drive the model results. Even for the same trait or disease, the
causal genetic variants and biological processes may vary across
associated cell types. For instance, for blood pressure regulation,
genes related to the nitric oxide pathway primarily affect endothelial
cells and their role in vascular function'?, while others predominantly
influence the calcium response and contractile function in smooth
muscle cells'?. To evaluate seismic’s ability to distinguish the true
causal gene set from all other genes, we analyze the influential genes
that seismic identifies for the target cell type in the simulated data
(Methods). We find that seismic successfully prioritizes causal genes
whether in the single or multiple target cell type paradigm, achieving
more than 20-fold higher precision for the top-ranked genes com-
pared to random chance (Fig. 2C, Supplementary Fig. 8).

As single-cell technologies continue to improve and we move
closer towards atlas-scale datasets, computational methods need to be
able to scale well with the number of cells. To this end, we also
benchmark the four methods for their runtime as the number of cells
in the input single-cell expression dataset increases (Fig. 2D, Supple-
mentary Data 3). seismic, FUMA, and S-MAGMA scale comparatively
well, handling hundreds of thousands of cells with runtimes in the
scale of minutes, whereas scDRS is over 30-fold slower, taking hours to
run. We speculate that the dramatic difference in speed between
scDRS and all other methods is likely due to its reliance on Monte
Carlo-based subsampling for empirical statistics, whereas all other
methods directly assess associations at the cell type level and do not
rely on simulations for significance assessment.

Together, these comprehensive benchmarking results highlight
seismic’s capabilities as a powerful, versatile, and efficient tool for
analyzing cell type-trait associations. Specifically, seismic controls
appropriately for type I errors, while having enhanced sensitivity in
detecting true causal associations, even when there are only subtle
expression changes across cell types and genes. Overall, seismic is the
only method to exhibit high detection power with computational
efficiency that scales to handle large datasets.

Methodological comparisons across traits and cell types

To examine seismic’s ability to capture known cell type-trait associa-
tions across a broad range of GWAS traits, we assemble 27 studies
spanning neurological diseases and disorders, immune-related con-
ditions, and a variety of other traits, including demographic, cardio-
vascular, and metabolic endpoints (Supplementary Data 1). We test for
cell type associations using the expression values and annotations
from the Tabula Muris FACS dataset”, which includes nearly 45,000
cells, covering 130 cell type characterizations across 17 tissues (Sup-
plementary Data 2). In total, we find 653 pairs of cell type-trait asso-
ciations that pass the significance threshold of FDR <0.05
(Supplementary Data4). Notably, seismic identifies associations link-
ing leukocytes with immune diseases, neurons with neuropsychiatric
diseases, smooth muscle cells with cardiovascular diseases, pancreatic
cells with type 2 diabetes, and hepatocytes with metabolic traits

(Fig. 3A), recapitulating known biological cell type-trait associations.
Moreover, seismic is robust against variations in gene window size
(average Pearson’s correlation between all pairs of windows> 0.98
across all 27 traits, Supplementary Fig. 9).

We then apply S-MAGMA, FUMA, and scDRS to the same Tabula
Muris FACS dataset and GWAS traits, checking for consistency with
seismic’s results and any differences in associations (Supplementary
Data4, Supplementary Figs.10-16). Notably, 89% of associations
identified by seismic are also detected by at least one of these frame-
works (Fig.3B, Supplementary Figs.10-16), where seismic captures
most of FUMA'’s reported associations (95%), followed by scDRS (88%),
then S-MAGMA (81%). This high degree of overlap highlights seismic’s
robustness and alignment with established methods. The high corre-
lation is further illustrated in a detailed between-method comparison,
which reveals that seismic consistently achieves the highest trait-wise
concordance among the methods, as measured by Spearman’s corre-
lation. Specifically, for 26 of the 27 traits examined, seismic and one
other framework achieve the highest concordance (Fig.3C, Supple-
mentary Fig. 17). Notably, seismic shows the highest average between-
method Spearman’s correlation across all traits (0.69), compared with
0.60 for scDRS, 0.66 for FUMA, and 0.60 for S-MAGMA. For the 330
common association pairs found by all frameworks, seismic exhibits
the most significant false discovery rates (FDR) in 80% of these pairs
(263 out of the 330 pairs), demonstrating its power (Supplemen-
tary Data4).

Besides these common findings, seismic also identifies additional
association patterns that may better capture the underlying biology.
For erythrocyte count, while scDRS ranks several cells from the
intestine as most relevant, seismic and S-MAGMA identify several
hematopoietic lineage cell types in marrow to be most associated,
more accurately reflecting the developmental process of red blood
cells. seismic also observes broad associations between neu-
ropsychiatric diseases and various pancreatic islet cell types, which is
especially noticeable in depression. These somewhat outlandish
associations are also recapitulated by the other methods, and inter-
estingly, previous studies have found potential associations between
pancreatic and neuropsychiatric diseases* >, which has led to
increased interest in a potential pancreas-brain axis. In total, seismic
only misses 2 cell type-association pairs identified by all other methods
(Fig. 3B, Supplementary Data 4), the fewest compared to other meth-
ods (56, 29, and 53 pairs for scDRS, FUMA, and S-MAGMA, respec-
tively). The two undetected associations—between microglia and
autoimmune disease, as well as pre-activation T cell subtype and
ulcerative colitis—are close to the multiple hypothesis threshold (with
FDR =0.066 and 0.096, respectively, Supplementary Data 4).

To assess the degree to which technical factors may affect
seismic’s specificity scores, we split the Tabula Muris dataset by
individual donor ID and recalculated the scores for each cell type.
Specificity scores remained highly consistent across donors for the
majority of cell types (Supplementary Fig. 18A), with cell types with
larger numbers of cells exhibiting higher correlation. This con-
cordance also extended to the downstream trait-implicated cell type
analysis, where a high correlation of statistical significance was
observed (mean Pearson’s correlation = 0.88 for cell-type associa-
tions (—log;o(p — value)) between pairs of donors across all traits,
Supplementary Fig. 18B), despite some traits having target cell types
not captured in several donors (e.g., liver tissue absent in 4 of 6
donors).

To explore generalizability to other large scRNA-seq datasets, we
also apply seismic to the Tabula Muris (TM) droplet dataset" (a dataset
obtained by droplet-based single-cell sequencing rather than profiling
individually sorted cells as in TM FACS, Supplementary Fig. 19) and the
Tabula Sapiens (TS) human scRNA-seq dataset®® (Supplementary
Fig.20). Comparing cell types that overlap between TM FACS and
these 2 additional scRNA-seq datasets, one using a different
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Fig. 3 | Characterization of cell type-trait associations across 27 diverse GWAS.
A seismic cell type-trait associations covering 15 tissue types and 130 cell types
from the Tabula Muris FACS dataset'” and 27 GWAS studies covering neurological,
immune, and various other disease or demographic endpoints. B Venn diagram
comparing the significantly associated cell type-trait relationships between
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methods (based on a 0.05 FDR threshold) assessed by the four MAGMA-based
computational methods, S-MAGMA, FUMA, scDRS and seismic. C Pairwise Spear-
man’s correlations of statistical significance of all (130) cell types
(—log;o(p—value)) for each pair of any two methods across a selected set of 12
diverse traits (other trait correlations are in Supplementary Fig. 16).

technology, and the other using human cells, we find consistent cell
type-trait associations (Supplementary Fig. 21). The mean Spearman’s
correlation is 0.78 between TM FACS and TM droplet, and 0.67
between TM FACS and TS across all traits, in terms of statistical sig-
nificance (in - logio(p-value)). We note that neither the TM droplet nor
the TS contains brain tissue, and the mean Spearman’s correlation is
0.84 and 0.75, respectively, if neuropsychiatric traits are excluded
from the comparison. The high concordance of seismic with other
methods is also consistent across datasets (Supplementary Figs.17, 22,
23). Such consistency underscores seismic’s robustness in identifying
trait-associated cell types across datasets of larger size, varying cov-
erage, as well as seismic’s adaptability to different species.

seismic associations are consistent across tissue-cell type
granularities

Having examined seismic’s consistency in identifying a wide variety
of trait-associated cell types, we turn our attention to evaluate the
accuracy of seismic’s ability to distinguish known vulnerable neuron
types for a well-characterized neurological disease, Parkinson’s
disease (PD). PD pathophysiology is well-established, with dopami-
nergic neurons residing in the substantia nigra pars compacta (SNc)
and ventral tegmental area (VTA) characterized as being particularly
vulnerable to degeneration?. Using a large mouse brain dataset®
encompassing up to 231 distinct cell types from 9 regions of the
adult mouse brain, in conjunction with a recent PD GWAS study™
with over 480,000 participants, we test whether seismic, scDRS,
FUMA, and S-MAGMA can recover known PD associations (Fig. 4,
Supplementary Data 5).

The rich brain region and cell type annotations in** provide a
unique opportunity to test how changes in cell type granularity affect
the reported cell type-trait annotations. We examine 5 different gran-
ularities of cell types, ranging from 14 broad subclass labels to 231
highly-specific cell annotations (brain region + fine cluster). seismic is
the only method to significantly prioritize PD-relevant dopaminergic
neurons across all cell type granularities (Fig. 4). FUMA and scDRS also
rank relevant cell types in some granularities highly, but mostly fail to
reach statistical significance after multiple hypothesis test correction.
Notably, S-MAGMA completely misses these vulnerable cell types. We
note also that most previous cell type-trait association analyses that
use datasets such as® typically perform their analyses at a broader cell
type level (usually what we have termed the ‘brain region + class’
granularity). Though using finer resolution annotations increases
the number of multiple hypotheses compared, we demonstrate that
it may be a worthwhile trade-off when using a more powerful asso-
ciation detection method, as it can lead to more precise biological
insights.

The seismic framework offers a novel perspective on AD
pathogenesis

The choice of an endpoint for cell-type trait association can allow for
the dissection of cell contribution to various endophenotypes of
disease. This is particularly true for diseases with multicellular
pathogenesis like Alzheimer’s disease (AD), where genetic studies
have mapped clinical and alternative traits, making it also an ideal
test case for demonstrating the power of seismic. Furthermore, while
selective neuronal vulnerability and pathological lesion formation
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Fig. 4 | Identification of genetically vulnerable brain cell types for Parkinson’s
disease across multiple analysis granularities. Cell type-trait associations with a
Parkinson’s disease GWAS study® using cell type characterizations at different
granularities from Saunders et al.*°. Specifically, cells are partitioned into five dif-
ferent resolutions with increasingly more specific cell type characterizations, the
broadest of which is subclass labels (top), to the most specific, which is brain

region + fine clusters (bottom). Points represent individual cell types, colored by
the neuron type (the most vulnerable dopaminergic neurons, other neurons, or
non-neurons). Vertical dashed lines indicate FDR thresholds (0.01 and 0.05). Any
cell types with FDR < 0.01 are labeled, except for the subclass and brain region +
class granularities, where cell types with FDR < 0.05 are labeled.

have been thoroughly described in AD***, the precise molecular
mechanisms driving neurodegeneration leading to cognitive decline
remain poorly understood. Formally, AD is characterized by two
pathological hallmarks, extracellular amyloid plaques composed of
Ap peptide and intracellular neurofibrillary tangles (NFTs) formed by
aggregated tau protein. NFTs appear according to a stereotypical
spatial pattern, first emerging in layer Il of the entorhinal cortex (EC),
later appearing in deeper layers of EC and CAl in the hippocampus,
before subsequently spreading to other neocortical and subcortical
regions. Progression of NFTs is accompanied by neurodegeneration
in the affected area. In spite of the strong correlation between clinical
symptoms of the disease and neuronal processes (NFT formation,
neurodegeneration, synapse loss), many GWAS studies have pri-
marily identified associations with immune cells such as
microglia®** %, This leads to questions of whether microglia are the
primary drivers of the disease or merely responsible for the clinical
symptoms of the disease. If the latter, one would expect to find non-
microglia associations for GWAS with non-clinical, pathology-based
endpoints, which could open new research avenues for under-
standing pathogenic mechanisms.

We use seismic to test whether GWAS for different AD-related
endpoints might yield divergent cell-type associations. Given that AD
pathology typically exhibits selective regional vulnerability, the ana-
lysis was conducted at the most fine-grained resolution (‘brain region +

fine cluster’ in Fig. 4). We first used an AD GWAS that includes a large
cohort of >63,000 patients diagnosed via clinical observations (clinical
GWAS)™*. This large study is representative of the AD GWAS typically
used in cell-type trait association studies. We also explore seismic
results for a GWAS for an alternative AD endophenotype comprised of
around 3100 patient samples of cerebrospinal fluid (CSF) tau levels*,
which serves as a biomarker of AD progression (tau GWAS)*. Though
the tau GWAS has a much smaller patient cohort, we hypothesized that
it may deliver clues for pathological mechanisms that have remained
elusive with the clinical GWAS.

Applying seismic on the clinical AD study along with the
expression data from Saunders et al.*°, we identify microglial cells
from various brain regions as the most associated with clinical
GWAS (Fig. 5A), demonstrating the pervasive neuroinflammation
patterns underlying clinical symptoms in AD patients. This is con-
sistent with previous studies, and indeed, we see that scDRS also
identifies significant associations between clinical AD with micro-
glial cells; neither FUMA nor S-MAGMA find statistically significant
associations, though FUMA does rank microglial associations as
highest among cell types (Supplementary Fig. 24). It is noteworthy
that microglial cells from both vulnerable (hippocampus) and
resistant (striatum) regions of the brain are similarly associated with
the trait, suggesting that they are not the primary driver of regional
differences in pathology. Using the tau GWAS with the same
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Fig. 5 | seismic reveals distinct divergent cellular mechanisms underlying Alz-
heimer’s disease (AD) progression and its hallmark tau accumulation. A Top 10
associated cell types (at the brain region and fine cluster granularity) when applying
seismic to an AD GWAS study with a clinical endpoint are shown, ordered by p-
values. Brain region abbreviations: FC, frontal cortex; GP, globus pallidus; HC,
hippocampus; PC, posterior cortex; SN, substantial nigra; STR, striatum; TH, tha-
lamus. B Top 10 associated cell types (at the brain region and fine cluster granu-
larity) when using a GWAS that measures an AD biomarker (CSF tau levels). Brain
region abbreviations: HC, hippocampus; PC, posterior cortex. Additional term
specification: “HC neurons entorhinal cortex” are entorhinal cortex (EC) excitatory
neurons positive for Nxph3; “HC neurons medial entorhinal cortex 1” are EC layer Il

(ECII) excitatory neurons positive for Cbinl. C Influential gene analysis for the genes
driving the association of neurons from deep layers of the entorhinal cortex (HC
neurons entorhinal cortex) and the tau GWAS. Genes colored in red are influential,
and dark red indicates influential genes driving the associations for both these and
ECII neurons; several top influential genes are labeled. KEGG terms enriched for
these genes are shown in the enrichment plot to the right. D Influential gene ana-
lysis for the genes associated with neurons in the medial entorhinal cortex (HC
neurons medial entorhinal cortex 1, which we refer to as ECII) and the tau GWAS. As
in (C), influential genes are colored red, and influential genes shared between deep
layers of the EC and ECII are darkened. The enrichment plot shows KEGG pathways
for the corresponding influential ECII genes.

Nature Communications | (2025)16:8744


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63753-z

Saunders et al. expression dataset, we see that scDRS seems to
suggest generic astrocyte associations. Though FUMA and
S-MAGMA still struggle with identifying statistically significant
associations, they do prioritize diverse neuronal associations,
including one of the neuronal populations known to be vulnerable
to tau accumulation in AD ("HC neurons entorhinal cortex”).
Meanwhile, using seismic, we find significant associations with sev-
eral of the neuronal populations most vulnerable to tau accumula-
tion in AD (Fig.5B), including deep ("HC neurons entorhinal
cortex”) and superficial ("HC neurons medial entorhinal cortex 17)
layers of the entorhinal cortex, as well as CAl pyramidal cells. While
these populations have been established as vulnerable based on
pathology studies, such associations have not previously been
found using trait-association studies based on AD-related GWAS.
These results suggest that tau pathology in AD may be more
intrinsically linked to neuronal susceptibility than inflamma-
tion alone.

With seismic’s influential gene analysis, we can more closely
inspect the genes corresponding to increased risk driving the top cell
type-trait association. For hippocampal microglia, we identify 88 genes
as positively influential for clinical AD diagnosis, and find these to be
enriched for immune-related GO processes (Supplementary Fig. 25,
Supplementary Data 6). Some of these genes are expected, like SPI1,
MS4A6A, and TREM2, which are microglia-specific and known to have
significantly reported associated SNPs with clinical AD. There are also
several other interesting genes identified by seismic, such as LAPTMS,
an amyloid plaque responsive gene*, and phagocytosis regulator
VAVI®. Much less expected are the influential genes found for
entorhinal cortex neurons and the tau GWAS (218 genes for neurons
from deep layers of the entorhinal cortex, 199 genes for neurons from
entorhinal cortex layer II) since, as mentioned, previous GWAS have
not yielded clear neuronal genes associated with AD-related traits
(Fig. 5C, D, Supplementary Data 6).

There is some overlap of influential genes shared by all AD
vulnerable neurons (different layers of the entorhinal cortex and
hippocampus CAl) associated with the tau GWAS (Supplementary
Fig. 26). However, few pathways are consistently enriched across all
three neuron types (Supplementary Data 6). Instead, both entorh-
inal cortex populations are enriched in genes involved in axon
guidance, while CAl and entorhinal cortex layer Il (ECII) show
enrichment in genes related to long-term potentiation (Fig. 5C, D,
Supplementary Data 6), suggesting that distinct cellular processes
contribute to the association of these cell types with CSF tau.
Notably, the enrichment of both long-term potentiation and axon
guidance genes in ECII aligns well with our previous study**, which
used orthogonal datasets and analysis strategies to demonstrate
that regulators of structural and electrophysiological features of
the axon underlie ECII vulnerability. This convergence of evidence
strongly points to ECII axons as a defining Achilles’ heel for these
neurons. Beyond these axonal and synaptic pathways, we find that
genes driving associations with CSF tau levels in deep layers of the
EC show strong enrichment in several metabolic pathways (e.g.,
cellular respiration, electron transport chain), while those driving
associations with tau levels in layer Il neurons are more enriched in
proteostasis pathways (e.g., protein destabilization) (Supplemen-
tary Fig.27, Supplementary Data 6). Metabolic® and
proteostatic*®*” contributions to vulnerability of EC are among the
very pathways previously suggested to underlie EC vulnerability,
and several identified influential genes, such as VPS26A, have con-
nections with EC vulnerability in both cell types. The fact that seis-
mic does not find any association between microglia and CSF tau
further suggests that microglia might not be the main drivers of tau
pathology, but rather the drivers of the clinical manifestations of
AD. Additionally, we have found that using the tau GWAS enables
seismic to uncover neuronal associations as well as genes and

pathways with important mechanistic and therapeutic potential.
These results demonstrate the value of more targeted endophe-
notype GWAS—albeit smaller—for complex diseases.

Discussion

Atlas-scale single-cell RNAseq datasets have been generated with the
promise of many exciting future applications. One way in which we can
realize this potential is by combining them with quantitative genetic
studies, helping to disentangle the tissue- and cell-specificity of com-
plex traits and diseases. So far, several existing tools integrating
scRNA-seq with GWAS studies to uncover cell type-trait associations
have emerged'?, but these tools have several drawbacks (Table 1) that
seismic addresses, including removing the need for thresholds,
accounting for gene expression variability, and being scalable with the
number of cells in an expression dataset. Importantly, seismic pro-
poses influential gene analysis as a means to derive deeper biological
insights for cell type-trait analyses.

Through seismic, we underscore the critical, yet often overlooked,
influence of cell type granularity and GWAS endpoint selection on the
outcome of cell type-trait association studies—two factors that, while
intuitively important, have not been systematically explored in pre-
vious analyses. seismic not only brings this observation to light but also
demonstrates precisely how these choices shape the biological rele-
vance and depth of the insights gained. Here, we observe that seismic
can find results that are largely robust to changes in cell type granu-
larity (Fig. 4), while changes in granularity seem to more strongly affect
the cell type-trait associations detected by other methods, both in the
statistical power of detecting true associations and in the prioritization
of specific cell types. We thus strongly recommend running any
method at several cell type granularities to assess result robustness
and using the finer cell type definitions to reveal more mechanistic
interactions. Furthermore, as evidenced by the AD case study, it may
be fruitful to include more targeted GWAS endpoints when studying
complex disease. One of the interesting future directions we envision
for seismic is an extension to automatically test for cell-type associa-
tions at different cell-type granularities simultaneously. Such a feature
would further complement the expanding cell reference atlases and
facilitate faster identification of important cell-trait signal.

The application of seismic on the two AD-related GWAS studies
(Fig. 5) begins to address a long-standing conundrum with AD-linked
GWAS: large clinical studies consistently identify only microglial
associations, despite AD being characterized by neuronal pathology
and selective neuronal vulnerability—patterns not reflected in the
regional homogeneity of microglia. This has dampened enthusiasm for
investigating the mechanisms of tau accumulation within neurons, an
important facet of AD pathogenesis that offers significant therapeutic
potential. Limitations of large clinical GWAS, such as the inclusion of
individuals with significant silent pathology in control groups*® or
mixed pathologies in the diseased group®, likely dilute signals related
to AD pathology and accentuate neuroinflammation signals common
across various neuropathologies. More critically, clinical GWAS may
capture processes tied closely to symptomatic presentation rather
than the broader, decades-long pathological cascade of AD.

The cognitive reserve theory and pathological evidence from
longitudinal cohort studies suggest that while NFTs are necessary for
AD symptom onset, the severity of cognitive symptoms does not
always align with the extent of neuropathology. In fact, cognitive
decline can be influenced by factors that have little to do with patho-
genic mechanisms®*~?, suggesting that clinical endpoints may not be
fully adequate for capturing the neuronal signals essential for disease
progression. GWAS using pathological or biomarker endpoints can
avoid these pitfalls, but they are smaller and have less power. Here, we
demonstrate that seismic’s ability to leverage neuron-type-specific
signals in lower-powered GWAS can overcome these challenges.
In what we believe is the first reported neuronal association for an
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AD-related GWAS with normal reference expression data, we show that
a proxy for tau pathology, tau levels in the CSF, is genetically asso-
ciated with the most vulnerable neurons in AD. While previous GWAS-
based cell-type enrichment methods have predominantly identified
microglial associations"**®, our approach successfully captures the
neuronal component that reflects established pathological patterns.
Since CSF tau is released from neurons undergoing degeneration or
accumulating tau, it likely reflects processes occurring within these
vulnerable populations. Among all the neuron types profiled by
Saunders et al., seismic identifies every type that exhibits NFT pathol-
ogy during preclinical stages of AD, underscoring the power of this
framework. The association of vulnerable neurons with CSF tau, but
not microglia, suggests that solely focusing on microglia may overlook
key aspects of AD pathology. By using GWAS for other AD-linked
endpoints, we hope to eventually develop a more holistic view of
microglia’s role, particularly in their crosstalk with the vulnerable
neurons responsible for AD neuropathology.

Our CSF tau GWAS analysis also contributes to the ongoing
debate on tau spreading. The identification of CAl pyramidal cells and
entorhinal cortex layer V neurons, which accumulate tau pathology
after ECII neurons, suggests that these cells may also have an intrinsic
vulnerability to NFTs, rather than simply being passive recipients of tau
spreading from ECII neurons. This again highlights the potential for
hard-wired susceptibility in certain neuron types.

Even though in our study, seismic has demonstrated strong per-
formance in capturing trait-associated cell types, several caveats
deserve further attention. Firstly, as with any other cell type-trait asso-
ciation method, statistical significance suggests a strong association,
but not necessarily causality between cell types and traits. Secondly,
there can still be false negatives using seismic. In our analysis of the
Tabula Muris FACS dataset across 27 traits, seismic misses 22 association
pairs that are identified by at least two other methods (Fig. 3). We note
that this is the lowest number among all methods (135, 139, 118 for
scDRS, FUMA, S-MAGMA, respectively), and a closer inspection of these
22 associations reveal that several may be spurious (e.g., Crohn’s disease
associated with limb muscle skeletal muscle satellite cell, all results in
Supplementary Data 4), suggesting that some of these 22 may be false
positives by competing methods rather than false negatives from seis-
mic. Nonetheless, a small number are better supported associations,
such as the microglia-autoimmune disease link, which seismic may
underdetect because it will better emphasize more sharply specific
gene-expression signatures as opposed to more diffuse or broadly
expressed programs. A third limitation is the usage of a scRNA-seq
mouse brain atlas® in our PD and AD analyses, as opposed to a human
scRNA-seq brain expression atlas. Unfortunately, current limitations in
data quality and scale hinder us from using human brain-level data right
now>. TS does not include brain tissue, but we do find that seismic
identifies associations that are consistent between the mouse TM FACS
dataset and the human TS dataset in overlapping cell types. We also
note that, as found in previous studies', the mouse datasets typically
yield cleaner association patterns. As atlas-scale human data continues
to improve, we expect the signal we can detect with seismic to also
improve. Finally, seismic currently leverages MAGMA-derived gene-level
associations primarily based on proximal SNPs, potentially overlooking
regulatory variants that act from greater distances. Future enhance-
ments to seismic, detailed in Supplementary Note 3, could incorporate
explicit modeling of cellular dependencies, batch effects, hierarchical
cell-type relationships, and distal regulatory SNP-gene interactions.
These advancements would further expand seismic’s utility for diverse
complex trait-disease scenarios.

In conclusion, we have developed a new methodological toolkit to
take better advantage of scRNA-seq and GWAS data to model the
interplay between tissue, cell type and complex traits. We make all
code for seismic and the accompanying analyses available through

GitHub (https://github.com/ylaboratory/seismic-analysis) and install-
able as an R package, seismicGWas (https://github.com/ylaboratory/
seismic). The processed expression data and GWAS summary statistics
are now publicly available on the Zenodo repository (https://zenodo.
org/records/15582078).

Methods

The seismic framework

To identify cell type-trait associations, seismic takes 2 inputs: (1)
MAGMA z-scores processed from GWAS summary statistics for a given
trait; and (2) a scRNA-seq dataset that covers cell types of interest
(Fig. 1A). More details regarding how we processed GWAS and scRNA-
seq datasets can be found below (see ‘Data preprocessing’). Many
scRNA-seq datasets have an inherent hierarchical labelling structure
(e.g., cells can be grouped by tissue of origin and also further divided by
cell subclass or cell state). In other words, cell types can be categorized
at different levels of granularity, for example, adding resolution to a
traditional cell type characterization by also considering its tissue sub-
region. In most applications, we recommend choosing finer granula-
rities, which typically translates to higher resolution results.

One of the motivating assumptions of seismic is that the genes
that best characterize a cell type are not necessarily the genes that
have the highest expression in the cell type, but instead the genes that
are most specific to that cell type. Optimally, these cell-type-specific
genes would have consistently higher expression in all cells within the
cell type and much lower or even no expression in other cells. The key
insight of seismic lies in how to translate this optimal criterion into a
continuous specificity score that can be calculated from a given scRNA-
seq dataset and collection of cell types.

The seismic specificity score. The optimal criterion can be broken
down into two sub-criteria: (1) consistently higher expression in a cell
type of interest in comparison to other cells; and (2) expression in all
cells within the cell type. These two sub-criteria are naturally related,
but capture different aspects of cell-type-specificity. The first sub-
criteria captures the variability and magnitude of expression, while the
second focuses on the proportion of cells in a cell type where the gene
is expressed (in a binary sense, ignoring the magnitude of expression).
Here, we describe how continuous scores representing each of these
sub-criteria are calculated.

Let £ be an N x M matrix representing scRNA-seq expression data
with N genes and M cells. Withj € {1, . .., M} representing the index for
eachcellinEandce{],..., C} representing the index for each of C cell
types at the selected granularity, we represent cell type set member-
ship as a labeled set of cells L = {jjj is labeled as cell type c}. For a given
cell type ¢, we define £€ as the sub-matrix of £ with column indices
provided by L©. E©) is the sub-matrix of E for the set complement of
L, which represents the expression of all cells not labeled as c.

We first seek to estimate the probability a gene has consistently
higher expression in a cell type of interest. In other words, we want to
estimate a score p =P(X'9 >X\"), where X\© is a random variable
representing the expression level of gene i in cell type c. We see that:

PXE 2 X ) =P — X9 <0)

(i x) = (=) o)

2 2
o o9

=p

‘ a‘.C,'Z
where )?f-c) and )?EC/) are the sample mean expression for gene i in cell
type ¢ and all other cells, respectively, 0,.2'” and 0,?((' are the corre-
sponding sample variances, and |L| and |L©| are the number of cells
in cell type c and all other cells, respectively. Thus, if there is a suffi-
ciently large number of cells in cell type ¢ (and otherwise), we know
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that based on the Central Limit Theorem, we can estimate p|° as:

¥© _ %©
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ILOr i)

where @ is the cumulative distribution function (CDF) of the stan-
dard normal distribution. We note that this formulation carries
similarities with the derivation for the test statistic for a two-sample
z-test; however, we are primarily interested in calculating a good
estimate for p{® and not in calculating p-values that would
correspond to a null hypothesis for no difference in expression. In
this current formulation, pﬁc) is bounded from [0, 1], where higher
scores reflect higher expression in cell type c for gene i, even after
considering the variability of expression.

Next, we consider how to estimate the probability of expression
across cells in a cell type of interest if we consider expression as a
binary variable. We see quickly that this is akin to estimating the ratio
or proportion of cells in a cell type where we see non-zero gene
expression. Thus,

|L(C)|
@o_ 1

i ‘L(C)‘jzl

(Ej.j“ > 0), 3)

where / is the indicator function. As with p\, r\ it is also bounded
from [0, 1], but here, higher scores reflect that gene i is expressed in a
higher proportion of cells in cell type c.
Finally, we define the seismic specificity score as:
(© c)
si’= f : r(,-c) © @
dc=1Pir
Here, we see that s\ is still bounded between [0, 1], but now, p{°’ and
rﬁc) are also rescaled across all cell types to further highlight the spe-
cificity. A score close to 1 can be achieved if gene i both has con-
sistently higher expression in cell type ¢ compared with other cells,
even after considering expression variability and is also expressed in all
cells within the cell type. As part of the seismic framework, we calculate
the specificity score sf.c’ for all genes i and cell types c in the dataset.

Quantifying cell type-trait associations. We assume that if a cell type
is highly associated with a trait, then the cell-specificity of its gene
expression should have explanatory power for gene risk. In other
words, if we observe that as the specificity of a gene to a particular cell
type increases, there is correspondingly increased association with a
disease, that would suggest a strong cell type-trait association. This can
be formulated as a linear model:

Z9=Py+pS +e (©)

Here, 7 denotes the vector of gene z-scores for cell type ¢ given by
MAGMA gene analysis, and S© is the vector of seismic specificity scores
for cell type c. Only genes that both have a z-score from MAGMA and
are captured in the processed scRNA-seq datasets are considered.
After fitting the linear model, we can test the null hypothesis of
1 =0 against the one-sided alternative hypothesis 5; > 0, resulting in a
p-value for each cell type c. To correct for multiple hypothesis testing,
we calculate and report Benjamini-Hochberg false discovery rates
(FDRs)**. The one-sided test here tests for a positive linear relationship
between cell-type-specificity and gene risk; we note that it is also
possible that the relationship can be non-linear, which could poten-
tially be addressed in the future using kernel methods. However, the
advantage of this formulation is that we can statistically quantify the

association in a directly interpretable way and it enables influential
gene analysis (below).

Alternatively, seismic also provides a nonparameteric statistical
test option (Spearman’s rank correlation coefficient test) if the user
wishes to explore potential non-linear relationships between the seis-
mic score with MAGMA gene-level z-score. For a more detailed dis-
cussion of choice for a linear model over a non-linear model for
prioritizing trait-implicated cell types, please refer to Supplementary
Note 2.1.

Influential gene analysis. For a significant cell type-trait association
pair, some genes with may be particularly “influential” for the linear
model. Here, we are using the statistical definition of an influential
observation, specifically that removing the observation (i.e., gene)
would have a strong effect on the model. Here, we calculate the dif-
ference in betas (DFBETAS) statistic®, which is a scaled measure of how
much the model parameters will change when removing a single
observation. Specifically, for each gene and f;:

Bl - B(—i)l

1 (6)
\[MSE (89" 5©),

where B, is the regression coefficient estimated with all genes, j_, is
the new regression coefficient calculated with gene i removed, MSE_;
is the mean squared error of the updated linear model without gene i,

DFBETAS; =

and (S(”TS(C)),-;1 is the i diagonal element of the (S(“TS“)f1 matrix
calculated using all genes. As recommended by Belsley et al., we use
the size-adjusted threshold for selecting top influential genes as
IDFBETAS| > LN where N is the number of genes modeled®. For gene

set enrichment analysis of the resultant influential genes, we use
clusterProfiler*®, where a negative geometric test was used for testing
the statistical significance.

Existing MAGMA-based cell type-trait association methods
For scDRS' runs, we use the default parameters (1000 genes) with
1000 Monte Carlo (MC) samples and the top 5% quantile of trait scores
across cells within a cell type as the test statistic for a given cell type.
Because scDRS requires disease gene sets and an expression dataset as
input, our processed data (‘Data preprocessing’) required some addi-
tional processing. Disease gene sets were generated from MAGMA
z-scores using the provided munge-gs command. For cross-species
analyses, scDRS deals with cross-species gene matches by their gene
names; as such, we annotated the gene name entries of the MAGMA
z-score files according to biomaRt mappings between Entrez IDs and
gene symbols”. If a gene is mapped to multiple z-scores, we collapse
by calculating the mean gene z-score. Rare cell types (those with fewer
than 20 cells) were removed from expression datasets to enable con-
sistent comparisons across methods. scDRS recommends the use of
empirical P-values for assessment of statistical significance; however,
the resolution is limited by the number of MC simulation runs, espe-
cially in a multiple-hypothesis test setting. Thus, we use the alternate
recommendation of transforming disease-cell type association MC
z-scores to their analytical p-value, followed by FDR calculations.
FUMA? provides a website for GWAS preprocessing and cell type-
trait association analysis, but it is challenging to systematically analyze
new datasets, especially for the null simulations and runtime analyses.
We thus processed scRNA-seq datasets into the input format required
by MAGMA (with expression values represented as log(CPM+1) as in
FUMA) and used FUMA’s recommended parameters and commands to
obtain p-values for each trait and cell type using the MAGMA software.
MAGMA-specific gene set analysis (S-MAGMA?) takes as input a list
of top genes based on the non-log-transformed CPM expression as in
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Bryois et al.°. Specifically, we used rescaled gene expression (where
each gene’s expression value is divided by the total expression of that
gene across all cell types), and the top 10% of genes that are most
specific as defined by Byrois et al.® were used for downstream testing.

scRNA-seq datasets. We processed and analyzed 4 large atlas-scale
scRNA-seq datasets, specifically Tabula Muris FACS (TM FACS)”,
Tabula Muris droplet (TM droplet)”, Tabula Sapiens (TS)*, and Saun-
ders et al.*°, capturing over 15 million cells across over 60 tissue
regions (Supplementary Data2). The TM FACS, TM droplet, and TS
datasets each had different quality control filters before we down-
loaded them. Specifically, the two TM datasets had removed mito-
chondrial genes and filtered outlier cells. We additionally filter out cells
with fewer than 2000 unique molecular identifier (UMI) counts. The TS
dataset had filtered out cells with fewer than 2500 counts but did not
consider mitochondrial gene expression, so we filter out cells where
>10% counts are from mitochondrial genes. The Saunders et al. dataset
provided cell-level annotations for doublets, outliers, singletons, and
unannotated cells, all of which we excluded. We further filtered out
cells if either >10% of counts were from mitochondrial genes or if there
were fewer than 1000 reads in the cell. Raw gene expression counts
were normalized using cell-specific size factors estimated by scran®.
Subsequent analyses use log2(normalized counts) with a pseudocount
of 1. For all datasets, we filtered out genes that were either expressed in
fewer than 10 cells or had a lower than 0.01 mean log-expression
across all cell types. We also only retained cell types that had at least 20
cells, to ensure sufficient data for stable statistical estimation of spe-
cificity scores and to minimize potential noise from poorly repre-
sented clusters. We selected these default parameters based on
empirical evaluations, but it may be possible that dataset-specific
adjustments can further emphasize the dataset’s characteristics and
capture more signal (see Supplementary Note 2.2).

For comparisons using mouse scRNA-seq data, we used mouse-
to-human gene mappings from biomaRt”. Genes without mapping to
human genes were discarded, and for genes with multiple mappings
to a single human gene, the mean specificity score was used.

We also manually examined the cell type label annotations for all
datasets to resolve or filter out cells with unclear annotations. For
example, certain cells had clearly confusing labels, such as hepatocytes
in the heart tissue in TS, and so were excluded from further analyses.
For the TM dataset, we used the provided annotations, pooling cells
into different cell types based on either the existing Cell Ontology
terms or the more detailed annotation where available. For the Tabula
Sapiens (TS) dataset, cell types were manually assessed against cor-
responding terms in the Cell Ontology*>*°, and any cell types that
could not be confidently resolved to an ontology term were excluded.
To further understand the potential impact of inter-individual varia-
tion on results derived from the Tabula Muris FACS dataset, we per-
formed a validation analysis by splitting the data by donor ID and
recalculating specificity scores and trait associations separately for
each donor (Supplementary Fig.18). For the primary cross-trait ana-
lyses involving the TM and TS datasets (Fig. 3), cell types were defined
based on the combination of tissue of origin and the curated cell type
annotations described above, allowing for investigation of both tissue-
and cell-type-specific associations. For other analyses, cell type anno-
tations without tissue information were directly used.

For the Saunders et al. dataset, cells were annotated to different
regions that had been sequenced separately (frontal cortex, posterior
cortex, substantia nigra, hippocampus, thalamus, cerebellum, globus
pallidus, entopedeuncular nucleus), as well as cell classes, clusters and
subclusters. Cell classes represent broad cell types of a region, which
Saunders et al. further refined by iterative clustering into progressively
more specific cell clusters and subclusters. For neurons, the sub-
clusters had also been more precisely annotated to their respective
structure in the region based not only on computational inference but

also on immunohistochemical validation. To establish better con-
sistency for cell types at each granularity, we manually cleaned and
refined these annotations. Specifically, for the ‘subclass’ granularity,
non-neuronal cells retained their corresponding annotations (e.g.,
microglia, oligodendrocytes), while neuronal cells were categorized by
neurotransmitter type (i.e., excitatory, inhibitory, dopaminergic, cho-
linergic). For the ‘brain region + class’ granularity, cells were grouped
by both brain region and broader cell class (i.e., neuronal cells were
considered as one entity and not subdivided by neurotransmitter
type). Similarly, for the ‘brain region + subclass’ granularity, cells were
grouped by both brain region and subclass. For the ‘brain region +
cluster’ granularity, cells were grouped by both brain region and
cleaned cluster annotations provided by Saunders et al. (which had
finer resolution than subclass and corresponds to specific cortical
layers or neuronal connectivity). Saunders et al. also further divided
clusters into subclusters, the finest resolution annotations that they
provide. These subcluster annotations were often redundant, so after
resolving typos, we combined subclusters that had closely related
annotations when they were derived from the same cluster within a
dissected brain region. ‘Brain region + fine cluster’ is the granularity
that corresponds to combining these combined subcluster annota-
tions with brain region information. For interneurons, which span
multiple brain regions, subclusters were combined by the primary
gene marker. The number of cell types thus varied from 14 at the
‘subclass’ granularity to 231 at the ‘brain region + fine cluster’ granu-
larity (Supplementary Data 4).

GWAS datasets. We processed and analyzed GWAS summary statis-
tics across a total of 30 complex traits (Supplementary Data 1). Because
the majority of GWAS summary statistics were reported using the
GRCh37 reference build, any studies with summary statistics based on
GRCh38 were converted to GRCh37 using LiftOver® for consistency.
SNP rsID annotations used dbSNP build 151. Duplicated SNPs were
dropped and SNPs without annotations in dbSNP were retained and
named by their respective chromosomes and positions.

We used MAGMA (v1.09b) to annotate SNPs to genes and com-
pute gene-level z-scores for each trait, which reflect the overall gene-
level association to the trait after factors such as linkage disequilibrium
and population stratification are regressed out based on individuals of
European ancestry from Phase 3 of the 1000 Genomes Project®?. SNP
assignment to genes used a 35kb upstream and 10 kb downstream
window around the gene body, as recommended in previous studies®.
We also examined the effects of systematically varying the MAGMA
gene window size on seismic results (Supplementary Fig. 9).

Label noise simulation

To evaluate the robustness of seismic specificity score, we simulated
various levels of cell type label noise using the TM FACS dataset to
mimic the scenario when cell cluster errors exist. First, we randomly
selected 10 tissue-specific cell types from the TM FACS dataset as
target cell types. Then, we systematically introduced label noise by
reassigning cells from other non-target cell types originating from
the same tissue as the target cell type. These cells can be represented
as contributor of clustering errors, which exhibit similar but slightly
different expression patterns. Increasing proportions of these cells
(ranging from 5% to 100% of the target cell types’ original cell count)
were added to the target cell type label set, simulating different
degrees of such noise. We then recalculated cell type specificity
scores for the new perturbed target cell types using seismic and
compared three other cell-type-specificity metrics: differential
expression score (DE score®®), gene specificity used in S-MAGMA
(Bryois gene specificity®), and specificity index*. The robustness of
each scores was then assessed by the normalized L1 similarity
(defined as 1 minus the normalized L1 distance) between the speci-
ficity score vector computed before and after the introduction of
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label noise. Higher similarity values indicate greater robustness to
annotation noise.

Null simulation

Null simulations were performed using random subsamples of the
Tabula Muris (TM) FACS dataset” and randomly selected GWAS end-
points. More specifically, we randomly selected 10 GWAS endpoints
from the 27 GWAS traits examined in Fig.3 (Supplementary Datal),
then randomly subsampled 10 subsets of 10,000 cells from TM FACS
to use as input expression data for each method, where 100 cells were
randomly selected as the target cell type. In our first null simulation
setup, for each of 10,000 runs, the gene indices for the expression
matrix were randomized. This random shuffle essentially breaks any
biologically relevant signal between the single cell expression and the
gene z-scores. Keeping the MAGMA z-score fixed, the p-value for the
random cell type and trait association was calculated for each method
and compared with the expected p-values.

We also performed the more direct null simulation using shuffled
z-scores on seismic and scDRS. (FUMA and S-MAGMA were excluded
from this comparison because they require complete MAGMA gene
analysis files (as opposed to more easily manipulated z-score files as in
seismic and scDRS).) In this setup, for each of the 10,000 runs, we
randomized the MAGMA z-score vector used as input to seismic and
scDRS together with the same randomly selected target cell types from
before (without further randomization of the expression matrix) and
examined the reported p-values for cell type-trait association.

Power simulation
To evaluate each framework’s ability to distinguish truly associated cell
types from irrelevant ones, we simulated disease-specific cell expres-
sion profiles by perturbing the corresponding disease gene sets used
in the null simulation. Specifically, we utilized the subsampled TM
FACS dataset and a subset of trait MAGMA z-score vectors as input,
leveraging scDesign3’s capability to generate realistic synthetic count-
level scRNA-seq expression matrices for trait-specific expression
patterns®. In our simulation procedure, we randomly selected 100
cells as the target cell type from subsets of the TM FACS dataset with
shuffled gene indices. The scDesign3 model was fitted using default
parameters and model distribution specifications. To enhance the fit of
the p matrix (the expected mean expression parameter for the cell-by-
gene matrix), we incorporated cell library size (total UMI counts) and
cell type labels (cell ontology class) as covariates. We selected 10
random target gene sets per expression dataset based on the MAGMA
z-score vector of the corresponding GWAS summary statistics. These
sets comprised 1000 genes expressed in at least 10 cells, with a portion
being trait-specific causal genes with high MAGMA z-scores, indicating
a high density of significant variants in proximal regions. Causal genes
were sampled based on MAGMA z-score weighting, while the other
confounding genes were sampled uniformly. To simulate various
levels of polygenic signal, we adjusted the ratio of causal genes to the
total gene set size, ranging from 0.2 to 0.8. New count-level data were
generated to replace the submatrix of the target cell type and gene set
in each randomization, yielding 100 new expression matrices. We also
varied the strength of expression perturbation by specifying different
effect size gradients by modifying the fitted u matrix to exact folds of
the original value and simulating the new submatrix using scDesign3.
After simulating datasets with synthetic cell type association sig-
nals, we ran each method with the previously described pipeline and
parameters. We report the power of each method in identifying the
perturbed cells as true trait associations (where the FDR is less than
0.05 after Benjamini-Hochberg correction), defined as the proportion
of 100 randomizations in which the goal is achieved. We also evaluated
the power of each method to rank the correct cell type based on
reported p-values (top 1 as well as top 5). Influential gene analysis is

also performed using these simulations to evaluate seismic’s ability to
distinguish true causal genes from the others.

For a complex trait, multiple cell types may be involved and
exhibit trait specificity or disease vulnerability. To simulate this more
sophisticated scenario, we also generate test cases with more than one
causal cell type that display trait-specific expression patterns. Four
simulation schemes were used to capture the correlation patterns
across multiple associated cell types: exclusive genes, independent
genes, shared causal genes, and shared other genes. In the ‘exclusive
genes’ scheme, target genes are sampled uniquely for each cell type,
where no overlap exists among the target gene sets of different cell
groups. The ‘independent genes’ scheme allows for potential overlap
by sampling target genes independently. The ‘shared causal genes’
scheme keeps causal genes identical across all target cell types, while
the ‘shared other genes’ scheme maintains identical non-causal genes
across cell types. For each scheme, we generate synthetic datasets
following the previously described scDesign3-based approach,
adjusting the sampling strategy accordingly.

Runtime analysis

We sampled a range of 10,000 to 500,000 cells from the Tabula
Sapiens®® (TS) data set to compare the end-to-end runtime for iden-
tifying associated cell types from a scRNA-seq dataset for 5 random
traits (Supplementary Datal). To assess runtime scalability beyond
the original (around 300,000 cells) available in the TS dataset, we
generated larger datasets (e.g., 400,000 and 500,000 cells) by
resampling extra cells that exceed the total number of cells in the
dataset. For each resampled cell that is appended the dataset, we
concatenated a unique numerical suffix to its cell type annotation, in
order to preserve the relative cell type proportions to the number of
cells observed in the original data. In the command line mode of
scDRS, it also performs extra analyses and reads in files multiple
times, which would further increase its runtime. To isolate the run-
time of only the cell type-trait association process, we wrote a Python
script that excluded these unrelated steps. All time for reading in the
dataset for scDRS was also excluded from the comparison. To control
the CPU usage, podman containers were used to limit the CPU usage
to a single core.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Processed expression data and GWAS summary statistics are available
through Zenodo [https://zenodo.org/records/15582078].

Code availability

All code for seismic and the accompanying analyses are available
through GitHub (https://github.com/ylaboratory/seismic-analysis) and
installable as an R package, seismicGwas (https:/github.com/
ylaboratory/seismic).
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