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As sequencing techniques advance in precision, affordability, and diversity, an abundance of heterogeneous sequencing
data has become available, encompassing a wide range of phenotypic features and biological perturbations. Unfortunately,
increased resolution comes with the cost of increased complexity of the biological search space, even at the individual study
level, as perturbations are now often examined across many dimensions simultaneously, including different donor pheno-
types, anatomical regions and cell types, and time points. Furthermore, broad integration across studies promises a unique
opportunity to explore the molecular underpinnings of distinct healthy and disease states, larger than the original scope of
the individual study. To fully realize the promise of both individual higher resolution studies and large cross-study integra-
tions, we need a robust methodology that can disentangle the influence of technical and nonrelevant phenotypic factors,
isolating relevant condition-specific signals from shared biological information while also providing interpretable insights
into the genetic effects of these conditions. Current methods typically excel in only one of these areas. To address this
gap, we have developed ALPINE, a supervised nonnegative matrix factorization (NMF) framework that effectively separates
both technical and nontechnical factors while simultaneously offering direct interpretability of condition-associated genes.
Through simulations across four different scenarios, we demonstrate that ALPINE outperforms existing methods in both
isolating the effect of different phenotypic conditions and prioritizing condition-associated genes. Furthermore, ALPINE
has favorable performance in batch effect removal compared with state-of-the-art integration methods. When applied to
real-world case studies, we showcase how ALPINE can be used to extract insights into the biological mechanisms that un-

derlie differences between phenotypic conditions.
[Supplemental material is available for this article.]

Biological complexity is multidimensional. Complex diseases im-
pact different tissues and cell types in unique ways (Melms et al.
2021; Kamath et al. 2022; Zeng et al. 2022), and biological factors
such as patient sex can also influence disease response (Ober et al.
2008; Huang et al. 2021; Belonwu et al. 2022). The rise of single-
cell technologies has fueled excitement for atlas-scale initiatives
that capture cell-level diversity across numerous variables but has
also highlighted the challenges of data harmonization and inter-
pretability (Mereu et al. 2020; Rozenblatt-Rosen et al. 2021).

The immediate recognition of a need for harmonization
methods focused on removing unwanted technical variation
(e.g., single-cell platform, experimental laboratory) has driven sub-
stantial method development efforts (Tran et al. 2020; Luecken
et al. 2022), which typically aim to project cells from different
data sets or samples into an integrated space (Eisenstein 2020;
Argelaguet et al. 2021). However, during this integration process,
the focus on aligning cell types can come at the cost of treating in-
terindividual variation as a batch effect that is removed (Luecken
et al. 2022). Thus, whereas these approaches can be effective at
aligning cell types to capture consensus signals across populations,
they risk obscuring important, nested condition signals, such as
sex- or tissue-specific differences with respect to disease state.

Recent realization that data harmonization can potentially
come at the sacrifice of some interpretability has led to method de-
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velopment efforts to build disentangled representations of sScRNA-
seq data by explicitly modeling the batch effects and biological
conditions during the integration process (Qian et al. 2022;
Weinberger et al. 2023; Liu et al. 2024; Piran et al. 2024; Zhang
et al. 2024; Zhao et al. 2024). This modeling approach aims to en-
able the identification of condition-associated genes as well as
more principled batch effect removal, although this task becomes
more challenging when there are multiple groups of batches and
conditions (as opposed to multiple levels within a single condi-
tion). For example, scINSIGHT (Qian et al. 2022) uses matrix
factorization to facilitate interpretable representation decomposi-
tion, whereas contrastiveVI (Weinberger et al. 2023) uses a varia-
tional autoencoder framework to capture differences between
conditions. However, these methods are inherently limited to
handling different variables within a single condition. When there
are multiple biological conditions, they need to be represented as a
concatenation of all combinations of variables (e.g., tissue+sex),
which makes it challenging to isolate and interpret individual
conditions, let alone make comparisons between conditions.
Meanwhile, although methods such as scDisInFact (Zhang et al.
2024) and scDisco (Liu et al. 2024) can explicitly model each bio-
logical condition separately, they use variational autoencoders to
identify cell embeddings, which limits the ability to link genes
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with specific conditions, only providing a notion of which genes
are generally associated with a broad category. Another deep gen-
erative method, biolord (Piran et al. 2024), uses latent optimiza-
tion for disentanglement, but there is even less support for the
ability to link genes with conditions, requiring the user to essen-
tially reconstitute predicted counts and perform differential gene
expression. In contrast, scParser (Zhao et al. 2024) adopts a matrix
factorization framework combined with sparse representation
learning to model multiple conditions, but because labels are
directly encoded, it makes the unrealistic assumption that all cells
with the same condition share the same effect.

Here, we introduce Adaptive Layering of Phenotypic and
Integrative Noise Extraction (ALPINE), a novel, flexible approach
designed to address the complexities of multicondition and multi-
batch scenarios with improved interpretability (Fig. 1). ALPINE
builds on the typically unsupervised nonnegative matrix factoriza-
tion (NMF) framework to incorporate supervised, label-guided
decomposition of biological conditions and/or technical batches.
The use of supervision sets it apart from previous NMF-based inte-
gration methods such as LIGER (Welch et al. 2019), and the novel
joint supervised-unsupervised representation enables improved
identifiability when modeling multiple conditions in a way that

A

methods like scParser (Zhao et al. 2024) does not. This process en-
ables users to directly extract meaningful condition-associated
genes, remove batch-associated signatures, and use the unguided
components to build a low-dimensional embedding of any re-
maining variation. In single-cell data sets, the unguided compo-
nents will typically capture the condition- and batch-agnostic
cell-type variation. The decomposed condition-associated signa-
tures can be simultaneously analyzed for gene associations as
well as cell- type associations, including between conditions,
which can enable efficient exploration of otherwise unwieldy
data sets.

Results

Overview of the ALPINE framework

ALPINE extends traditional NMF by decomposing scRNA-seq ex-
pression data (Fig. 1A) into interpretable components that reflect
both known covariates and shared biological variation.
Specifically, the method separates the data into “guided” compo-
nents (directly linked to provided labels such as batch or pheno-
typic condition), as well as an “unguided” component that
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Figure 1. Overview of ALPINE for disentangling the effects of conditions and batches. (A) Example of a data set with multiple condition and batch effects,
creating challenges in cross-study analyses. (B) ALPINE’s workflow incorporates an NMF-based approach with two main components: classic matrix decom-
position and label-guided decomposition. The label-guided decomposition enables identification of condition- or batch-associated components. (C)
ALPINE extends beyond standard single-cell analyses (e.g., clustering and cell embedding) by uncovering condition-associated genes and cells and ad-
dressing batch effects in a principled way, facilitating deeper insights across complex data sets.
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captures shared residual variation (Fig. 1B; Methods). This dual
strategy enables ALPINE to not only reconstruct the original data
accurately but also to generate condition-specific gene signatures
that are readily interpretable and remove batch effects present in
the data (Fig. 1C). Guided variables in ALPINE function analogous-
ly to categorical predictors in a regression model. Multiple catego-
ries are supported, and ALPINE assigns interpretable components
to each level. This flexibility allows the framework to capture
diverse experimental covariates, such as sex, tissue, or condition,
without being restricted to binary labels. To tackle the computa-
tional challenges associated with large-scale single-cell datasets,
ALPINE employs a mini-batch training strategy to improve
computational efficiency and enhance model generalizability
(Methods). This approach leverages subsets of cells to update the
cell embedding matrix, reducing memory usage and mitigating
overfitting. This strategy is particularly valuable when processing
large-scale scRNA-seq data sets. Overall, ALPINE’s design provides
a powerful framework for disentangling complex biological and
technical signals, delivering both high-quality integration and di-
rect interpretability of condition-specific effects.

ALPINE can disentangle condition information from
shared cell information

To test ALPINE'’s ability to disentangle multiple biological condi-
tions and batch effects, we simulated data sets of 40,000 cells
with one technical batch effect and two binary phenotypic condi-
tions (stimulation: control vs. stimulated; severity: healthy vs.
severe), similar to Zhang et al. (2024). We then implemented
four distinct perturbation scenarios (naive, overlap, two-patterns,
cell-specific), which were each generated and evaluated separately
(Fig. 2A; Supplemental Fig. 1; Methods). The different simulations
captured varying effect sizes from the condition and batch effects

(Supplemental Fig. 2), including scenarios where the batch effect
can exceed a weaker condition effect. We compared ALPINE’s per-
formance against the two disentanglement methods we could suc-
cessfully run (scDisInFact and scParser), as well as two baseline
comparisons (raw counts directly or principal components as in-
put). In addition to using ALPINE’s cell embeddings, we can also
reconstitute cell counts using only the unguided portions of
ALPINE’s W and H matrices, which are essentially a batch-re-
moved, integrated data set that can be used for downstream sin-
gle-cell analyses. We evaluate ALPINE’s reconstructed counts in
these simulations for their ability to support accurate cell-type
clustering and will revisit them with further evaluations in the
batch effect removal section below. We note that scDisInFact pro-
vides functionality to reconstruct batch-removed counts whereas
scParser does not, so we compare to both scDisInFact embeddings
and counts, but embeddings only for scParser.

In the training data, we find that ALPINE demonstrates strong
performance, especially in the more complex, realistic cell-specific
scenario. ALPINE’s reconstructed counts often demonstrate
even better performance than using the embeddings directly.
Specifically, in the naive, overlap, and two-patterns scenarios,
where we introduce fold changes to all of the cell types for a given
set of genes, the ALPINE reconstructed counts show generally
better performance than the scDisInFact embeddings, significantly
better performance than the scDisInFact counts, and comparable
performance with the scParser embeddings (Fig. 2B; Supplemental
Tables 1, 2). In the cell-specific scenario, where only a subset of cell
types are subjected to the condition effect (whereas all cell types are
affected by the batch effect), the ALPINE embeddings show compa-
rable performance with scDisInFact embeddings and significantly
outperform scParser and scDisInFact reconstructed counts, and
the ALPINE reconstructed counts significantly outperform all other
methods (Fig. 2B; Supplemental Tables 1, 2). We note that this cell-

naive overlap two—patterns cell-specific
-+ - . -
-l - -
¥ - o 1 |
- alls ey - g
1 -+ o 4
| &+ - - 4
- - [ - it
&+ - - N | -
o - - i —l-
1 I - 4+ |5
+ % - + |- g
(Not applicable) (Not applicable) (Not applicable) (Not applicable) |7
|- } A
I - } t I

S B S 2SS D OSSP S o OSSP S P $
S PLL ISP EL S P LSS P LS

Stimulated Control
Batch
ALPINE (embeddings)
g T reeeeosn i - - - - - e aaaany ALPINE (counts)
§ ””””””””””””””””””””””””””” scDisInFact (embeddings)
scDisInFact (counts)
scParser (embeddings)
o ... DN raw (PCA)
4 a>-> 3 raw (counts)
2 0o S
2 3
uc) = ALPINE (embeddings)
A & ALPINE (counts)
<+ 2 .
e scDisInFact (embeddings)
é’ scDisInFact (counts)
scParser (embeddings)
% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, raw (PCA)
@
IREEEEEEEEEEEE  paabEEREEEREE bbb hasbhbbd raw (counts)
®
o
40,000 cells
[] Perturbed genes [] Training [] Holdout
Figure 2.
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Systematic benchmarking for multibatch and multicondition disentanglement using different simulated scenarios. (A) Perturbation arrange-

ment of count matrices in the simulated data sets. For each scenario, 10 count matrices are generated, corresponding to batch and two condition types
(simulation and severity). The four scenarios include: adding signals to one label of each condition with independent perturbations (Naive); shared gene
perturbations between conditions (Overlap); signals added to both labels of each condition (Two-pattern); and cell-specific signals (Cell-specific). (B) Box
plots compare the F1 ARI performance based on k-means clustering (with the known number of cell types) of ALPINE (embedding and counts) with two
existing methods (scParser and scDisInFact) and two baseline approaches (raw, which uses the confounded counts including both batch and covariate
effects directly, and raw [PCA], which uses the top 50 PCs of the raw counts) across training and holdout data sets. ALPINE (both embedding and counts)
shows consistently strong performance, especially in more complex scenarios.
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specific simulation is a better reflection of real data, as many diseas-
es or treatments affect only a subset of cell types.

To evaluate generalizability, we also held out two sets of cells
that constitute entirely unseen combinations of effects (Fig. 2). For
these comparisons, only scDisInFact and ALPINE can generalize
existing trained models to new data sets. The ALPINE embeddings
show comparable performance to scDisInFact embeddings and sig-
nificantly better performance than the scDisInFact counts across
all scenarios. Similar to our observations in the training data, the
ALPINE reconstructed counts have further improved performance,
generally outperforming both the scDisInFact embeddings and
scDisInFact counts (Fig. 2B; Supplemental Tables 1, 2).

We also evaluated all methods under simulated scenarios
with larger amounts of extrinsic variation in gene expression for
cells in each cell type, corresponding to higher within cell-type
variability (Methods). As expected, as the heterogeneity of each
cell type increases, all methods suffer and eventually are unable
to support effective cell-type clustering. That said, the perfor-
mance trends between methods across different levels of heteroge-
neity were typically consistent, where ALPINE, especially the
reconstructed counts, generally outperforms other methods
(Supplemental Fig. 3).

In general, we consistently observe that scParser achieves rea-
sonable clustering in simpler cases but begins to lose accuracy in
cell-specific perturbations due to its assumption that all cells
with the same condition label behave similarly. Only scDisInFact
and ALPINE support the ability to reconstruct batch-removed
counts, but the reconstructed counts derived from scDisInFact
generally underperform in clustering, suggesting that its disentan-
gled VAE architecture does not fully preserve fine-grained cell type
distinctions. Both ALPINE’s embeddings and reconstructed counts
perform well, with reconstructed counts often outperforming the
embeddings, likely because the counts retain richer gene-level var-
iation while filtering out noise.

ALPINE efficiently identifies condition-associated genes and cells

Using the same four scenarios, we can further assess to what degree
the actual condition-associated genes are prioritized by each meth-
od. Both ALPINE and scParser successfully identify the true per-
turbed genes in simpler tasks, such as in the naive, overlap, and
two-pattern scenarios (Fig. 3A). However, as the complexity of
the task approaches more realistic conditions, as in the cell-specific
scenario, the AUPRC for scParser begins to decline. This decrease is
likely due to scParser’s strong implicit integration of all labels dur-
ing the matrix factorization stage. In scenarios where not all cells
are subject to the condition effect, this approach hampers
scParser’s effectiveness. Whereas scDisInFact is capable of detect-
ing some associated genes, it does not capture perturbed genes as
effectively as scParser or ALPINE. Importantly, these trends persist
even under higher extrinsic variation where cell-type clustering
breaks down (Supplemental Fig. 3). In this more challenging set-
ting, disentanglement methods still retain the ability to detect
condition-associated genes, and ALPINE shows the most robust
and consistent performance, especially in the cell-specific scenario
(Supplemental Fig. 4).

In most single-cell analysis pipelines, differential expression
(DE) analysis would be the standard approach for identifying con-
dition-associated genes, so we also compared DE results with the
disentanglement methods (Methods). In the simpler naive, over-
lap, and two-pattern scenarios (Supplemental Fig. 5), we find
that it is important to do batch correction before downstream

DE analysis, with non-batch-corrected comparisons performing
the worst. After batch correction, DE analysis can achieve compa-
rable or often better performance than scDisInFact. ALPINE and
scParser consistently outperform DE, with scParser matching DE
only in one condition. In the more complex cell-specific setting,
DE struggles when all cells are included (Supplemental Fig. 6A)
and the analysis improves only slightly when restricted to only
the perturbed cells (Supplemental Fig. 6B). ALPINE outperforms
all other approaches in this scenario.

We also note that ALPINE and scDisInFact have similar over-
all run times (Fig. 3B), whereas scParser requires substantial time
for its optimization procedure. Once trained, ALPINE has very effi-
cient execution times. We do note that part of the run time limita-
tions of scParser could be due to the fact that it does not have a
GPU implementation, but even directly comparing ALPINE’s
CPU implementation, we see that scParser is still many orders of
magnitude slower (Supplemental Fig. 7).

ALPINE’s decomposition framework enables it to not only
identify condition-associated genes but simultaneously identify
cell types associated with specific conditions. We first calculate
Hitimulation Y;“ to ascertain the associations between signatures
and labels, enabling us to determine which signatures are most rel-
evant to each label. Subsequently, we can directly visualize the rel-
evant component of Hgimulation t0 reveal which cell types are
predominantly affected by the condition (Fig. 3C). The low-di-
mensional representation visualizes the cell embeddings, with
colors indicating prevalence scores derived from the condition-as-
sociated signatures. This color-coding reflects the cell types subject
to which conditions. Such functionality, to our knowledge, is
the first of its kind for methods that learn disentangled
representations.

We also use these simulated scenarios to compare training AL-
PINE using mini-batch versus full-batch updates (Supplemental
Fig. 8). On the training set, both approaches yield similar F1 ARI
scores. However, on unseen holdout sets, mini-batch training typ-
ically results in better performance, confirming its advantage in
generalizing to new data (Supplemental Fig. 8A). The only excep-
tion occurs in the cell-specific scenario, likely due to the fact that
only a tiny proportion of cells are actually affected by the unique
conditions, and there may be variable proportions of perturbed
cells in each mini-batch. In addition, relative to full-batch training,
the mini-batch training strategy typically results in more rapid
convergence (Supplemental Fig. 8B). Thus, we see that mini-batch
training tends to enhance model robustness while reducing com-
putational resource demands.

ALPINE achieves state-of-the-art performance in batch effect
removal and cell-type clustering

After demonstrating ALPINE'’s power and interpretability in simu-
lation data sets, we further verify ALPINE’s effectiveness using real
data. Following the setup in Tran et al. (2020), we use three data
sets: (1) aligned cell types from two batches. The data is from
15,476 human peripheral blood mononuclear cells, and they are
from two different sequencing platforms (10x 3’ and 10x &)
(Zheng et al. 2017); (2) aligned cell types with multiple batches.
The data consists of five studies of human pancreatic cells from
four different technologies with a total of 14,767 cells (Baron
et al. 2016; Muraro et al. 2016; Segerstolpe et al. 2016; Wang
et al. 2016; Xin et al. 2016); and (3) nonidentical cell types, with
mouse retina data from two studies, including 62,851 cells
(Macosko et al. 2015; Shekhar et al. 2016). Besides scParser and
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Figure 3. ALPINE can accurately extract condition-associated genes. (A) Box plot of the AUPRC of ALPINE, scDisInfact, and scParser on condition-asso-
ciated gene detection in four scenarios. (B) Algorithm run time (execution) for ALPINE, scParser, and scDisInfact, and hyperparameter searching (optimi-
zation) for ALPINE (which tests 100 hyperparameter sets) and scParser (which tests five hyperparameter sets). scDisInfact does not provide an optimization
function. (C) UMAP plot of cell embeddings with batch and condition effects removed, colored by cell type. Highlighted are cells under two conditions with
distinct gene perturbations. ALPINE’s condition embeddings capture condition-associated signatures, accurately identifying stimulation-associated (types

4-9) and severity-associated cell types (types 10-15).

scDisInFact, we include seven methods (ComBat, Harmony, Liger,
MNN, Seurat, Scanorama, and scVI) that are designed to perform
batch removal and cell-type clustering, even though they do not
extract interpretable condition features. As a further baseline, we
also include using the PCA using the top 20 PCs to assess how
severe the original batch effects are in the input data set.

In all three scenarios, the ALPINE embedding shows better or
comparable performance in batch removal and cell-type clustering
compared to state-of-the-art batch removal methods (Fig. 4;
Supplemental Fig. 9). The other two condition-disentanglement
methods, scDisInFact and scParser, generally perform poorly. We
suspect that the poor performance of scParser stems from its as-
sumption that all cells in the same batch undergo identical trans-
formations and from its poor scalability, which required us to limit
its optimization time to 12 h. For scDisInFact, it is possible that the
lack of clear stopping criteria and hyperparameter optimization, as
well as the requirement that a condition label be given even when
there is no additional condition information, may be related to its
suboptimal performance. The ALPINE embedding consistently has
the best ARI scores and comparable NMI scores (scenario 1: ALPINE
embedding 0.798 vs. best: 0.820; scenario 2: ALPINE embedding
0.769 vs. best: 0.816; scenario 3: ALPINE embedding is the best)
to the next best method. The discrepancies between ARI and
NMI here are primarily a result of cluster oversplitting using
Leiden, with NMI at times being higher even when ARI is lower.

ALPINE'’s reconstructed counts achieve the highest-performing
ARI and NMI in all three scenarios, except ARI for scenario 3
(ALPINE counts 0.410 vs. best: 0.411). Comparing cell-type ASW
and batch ASW scores, both ALPINE embedding and reconstructed
counts also demonstrate strong performance compared to existing
batch correction methods (Supplemental Fig. 9).

To directly assess how each method’s corrected counts accu-
rately recover underlying expression patterns, we extract ground-
truth counts (unaffected by batch or covariates) from our earlier
simulated scenarios. We note that three of these methods
(ComBat, MNN, and Scanorama) are not designed to generalize
to unseen data sets, so we can only evaluate them on training
data set performance. In the training set, ComBat and MNN
have the best performance, closely followed by ALPINE, and
ALPINE achieves the lowest error in reconstructing counts for
both the validation and holdout sets (Supplemental Fig. 10).

ALPINE achieves robust disentanglement and cross-species
integration to enable condition analyses

We next apply a more end-to-end analysis of ALPINE on two large-
scale real data sets. The first, a brain cancer data set, provides a
benchmark for disentangling patient, sex, and cancer-type covari-
ates. The second, an adipose tissue data set combining human and
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Figure 4. Comparative study of ALPINE against other methods for batch effect removal and cell-type clustering. Adjusted rand index (ARI) and normal-
ized mutual information (NMI) of ALPINE versus scDisInFact (Zhang et al. 2024), scParser (Zhao et al. 2024), Seurat3 (Stuart et al. 2019), Harmony
(Korsunsky et al. 2019), LIGER (Liu et al. 2020), scVI (Lopez et al. 2018), Scanorama (Hie et al. 2019), MNN (Haghverdi et al. 2018), and ComBat
(Johnson et al. 2007), in batch effect removal using three real data sets based on cell-type clustering with Leiden (using default resolution=1).
Methods producing low-dimensional embeddings (scDisInFact, scParser, Seurat3, Harmony, LIGER, scVI) are compared with ALPINE embeddings in A-
C, whereas methods reconstructing counts (Scanorama, MNN, ComBat, and scVI [counts]) are compared with ALPINE-reconstructed counts in D-F. (A,
D) Human peripheral blood monouclear cell data sets with two batches and matched cell types. (B,E) Pancreatic cells data set with five batches and
matched cell types. (C,F) Mouse retina data with two batches and nonidentical cell types.

mouse samples across assays and tissues, demonstrates ALPINE’s
ability to generalize to cross-species integration.

The brain cancer data set (Abdelfattah et al. 2022) consists of
cells from 18 patients spanning both sexes and different cancer
types (glioblastoma, recurrent glioblastoma, astrocytoma, and oli-
godendroglioma). All three methods demonstrate reasonably
strong performance in eliminating batch and covariate effects
(Supplemental Table 3), but scParser exhibits poorer cell-type clus-
tering performance (ARI: 0.171) compared to scDisInFact (ARI:
0.352), the ALPINE embeddings (ARI: 0.413), and the ALPINE re-
constructed counts (ARIL: 0.359) (Supplemental Table 4). For com-
parisons of condition-associated genes, we note that ALPINE and
scParser can identify genes with individual labels within the covar-
iate, whereas scDisInFact can only identify genes associated with
the broader condition. This data set highlights this difference, as
ALPINE and scParser can provide gene weightings associated
with each of the four cancer types, whereas scDisInFact can only
provide a single list of genes associated with the overall cancer
type covariate. When comparing the resulting condition-associat-
ed genes (Supplemental Fig. 11), we find that there are typically a

small set of genes that are identified by all three methods and more
genes that are distinct for each method. The largest intersections
are typically between ALPINE and scParser, with typically fewer be-
tween either method with scDisInFact. This discrepancy may be
due to structural differences in the methods, as both ALPINE and
scParser use matrix factorization, but it could also be a direct result
of the fact that the genes identified by scDisInFact are, by design, a
mixture of genes associated with the individual underlying labels.

We further demonstrate ALPINE's versatility through an addi-
tional case study by applying it to a white adipose tissue data set
containing diverse batches (assays: Drop-seq, 10x 3’ v3) and condi-
tions (organisms: Homo sapiens, Mus musculus; sex: male, female;
depot tissues: subcutaneous adipose tissue, periovarian fat pad,
omental fat pad, inguinal fat pad, and epididymal fat pad). The
original study was only able to analyze each species separately,
but here, we demonstrate that ALPINE is capable of identifying
unifying cell embeddings across species, and the interpretability
of its components further enables a more comprehensive compar-
ison of cellular characteristics across species. Before further down-
stream analysis, we find that applying ALPINE directly with
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associated conditions effectively removes batch effects (Fig. 5A),
yielding well-mixed cell populations across species, with the nota-
ble exception of adipocytes, which remain distinct.

We find that ALPINE’s cell embeddings accurately reflect a
low abundance of adipocytes in Drop-seq versus a higher represen-
tation in sNuc-Seq, recapitulating the established platform-specific
difficulty of capturing adipocytes (Fig. 5B). We also find distinct
cell composition variations across fat depots, notably a higher
macrophage proportion in the male mouse epididymal fat pad,
which prompted further exploration of sex-related differences.
Within the sex-specific embeddings, ALPINE correctly captured in-
creased macrophages in male mice, as well as mammary gland ep-
ithelial cells unique to female mice (Fig. 5C). In human samples,
we see a more even distribution of immune cell types compared
to mice, highlighting ALPINE’s ability to capture detailed, biolog-
ically relevant signals across species.

An important unanswered question is what biological factors
drive the distinct differences between mouse and human adipo-
cytes. In the original study, this comparison was infeasible because
the mouse and human cells were not embedded in a shared space.
We calculated the difference between human and mouse adipo-
cyte gene signatures and applied GSEA to reveal functional dis-
tinctions (Fig. SD), identifying several adipose-related signals,
including melanogenesis (Randhawa et al. 2009), which has
been reported in human adipose tissue, where various melanogen-
esis-related genes contribute to the presence of melanin.
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Additionally, we find the Hedgehog signaling pathway (Fontaine
et al. 2008), known for its dysregulation during adipocyte differen-
tiation. Other enriched terms, such as the sphingolipid signaling
pathway (Lukaszuk et al. 2024), further demonstrate the biological
changes associated with adipose tissue. These findings underscore
the utility of our methods in uncovering the underlying biological
functions linked to specific conditions.

We also compare ALPINE’s findings with those of scDisInFact
on the same data set (Supplemental Fig. 12). Unfortunately, we
were unable to obtain results for this data set from scParser (see
Methods). Initially, we analyze the integration measures for cells,
covariates, and batch, observing comparable outcomes between
ALPINE and scDisInFact, except for ARl (Supplemental Tables
5, 6). scDisInFact’s conditional variational autoencoder-based
model limits its ability to derive covariate-associated weights for
each sample, so we are unable to construct a covariate-associated
cell embedding space to enable the composition analysis described
above.

We find that a further limitation of scDisInFact for interpret-
ability is an inability to associate gene scores within individual la-
bels. For the cross-species analysis, this means that we can only
obtain a single organism-associated gene list, as opposed to dis-
tinct human- and mouse-associated genes. Comparing the indi-
vidual genes identified (see Methods), ALPINE identifies 383 and
226 significantly associated genes for mouse and human, respec-
tively, whereas scDisInFact finds 112 general organism-associated
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Figure 5. Cross-species analysis in adipose tissue with multicondition analysis. (A) The original data set displays multiple batch and condition effects, with
colors indicating various categories. Post-ALPINE application, batch effects from sequencing technologies are removed, resulting in aligned clusters of sim-
ilar cell types across species, although adipocytes remain distinct due to biological differences. (B) Condition embeddings reveal associations between cell
types and assay/tissue labels, accurately capturing expected cell types. Notably, Drop-seq fails to identify fragile adipocytes, which are detectable only via
sNuc-Seq. Tissue embeddings further represent accurate cell-type abundances across conditions. The stacked bar plot is color-coded by cell types, con-
sistent with A. (C) Analysis of sex embeddings, separated by species, indicates that human cell compositions are more similar between males and females,
whereas mouse samples exhibit significant differences, underscoring the identified sex-related variations. (D) The bar plots display normalized enrichment
scores for KEGG terms from the GSEA analysis, comparing human and mouse adipocytes using gene data from W, ganism- Positive values (navy bars) indi-
cate higher enrichment in humans, and negative values (red bars) denote higher scores in mice.
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genes. There are only five genes found in common between
scDisInFact’s genes with ALPINE (all with the human-associated
signatures). Among these are four mitochondrial genes (MT-CO2,
MT-CO3, MT-ATP6, MT-ND3) that are the top-ranked genes by
both methods. Although no cross-species comparison has been
conducted on these genes, one study indicates that these mito-
chondrial genes play a crucial role in cold-induced mitochondrial
biogenesis in white adipose tissue (Ito et al. 2024). Another study
also identified MT-CO2, MT-ND3, and MT-ATP6 as being correlat-
ed with BMI in their meta-analysis, potentially linking them to
participants in the study with high BMI (Kraja et al. 2019).
Whereas this shared identification is exciting, unfortunately, the
organism-associated gene scores from scDisInFact do not yield sig-
nificant GO enrichment using GSEA (FDR <0.1) for further func-
tional comparisons with ALPINE. In general, these results
illustrate that ALPINE not only achieves effective cross-species in-
tegration but also delivers enhanced interpretability by explicitly
delineating condition-specific signals.

Discussion

In this study, we demonstrate that ALPINE is capable of simultane-
ously addressing multiple challenges in single-cell data analysis,
including disentangling complex batch and condition effects
and finding condition-associated effects on genes, cells, and inter-
condition interactions. Compared to existing disentanglement
methods, ALPINE provides significant advantages in integration
performance, interpretability, and scalability.

Across both simulations and real data sets, our analyses reveal
a tradeoff among existing disentanglement methods. Some ap-
proaches excel at cell clustering but are limited in resolving
condition-associated genes, whereas others capture gene-level as-
sociations at the cost of clustering robustness. Furthermore, we ob-
serve that beyond practical limitations such as run time and
usability, scParser can struggle with cell type-specific perturba-
tions and does not provide the ability to generate reconstructed
counts. scDisInFact provides that feature but shows uneven perfor-
mance between their embeddings and reconstructed counts. It
also can only identify covariate-level rather than label-specific
gene associations, limiting interpretability. Meanwhile, ALPINE
uniquely balances these tasks and performs well across both of
its outputs, even under heterogeneous perturbations or high ex-
trinsic variability. Both its embeddings and reconstructed counts
support accurate clustering, and its embeddings recover label-spe-
cific gene signatures that enable more precise biological interpreta-
tion. The consistency in ALPINE stems from its unique joint
supervised-unsupervised design, which combines supervised guid-
ance with interpretable factorization to both preserve cell-level
structure and condition-specific gene signals.

Whereas ALPINE demonstrates strengths in disentangling
batch and condition effects and capturing both general and cell-
specific signals, it may face limitations in scenarios with complex,
nonadditive, or nonlinear interactions among conditions, as these
may not be fully captured by its underlying NMF framework.
Additionally, handling highly variable cell populations or very
subtle condition effects may reduce interpretability. Future work
could focus on extending ALPINE'’s framework to capture nonlin-
ear interactions. Furthermore, it is also possible for biological
variables of interest to exhibit more complex, interesting structure,
such as continuous values or nested hierarchical structure. ALPINE
can be naturally extended by considering different loss terms for
different types of guided variables to handle that additional com-

plexity. One practical limitation of ALPINE is that it currently relies
on users to identify and combine fully confounded variables dur-
ing preprocessing because their separate effects are not statistically
identifiable. Future versions could incorporate model or feature se-
lection strategies, which would enable the framework to automat-
ically identify the most informative combinations of covariates.
Finally, there are also opportunities to further refine ALPINE’s
built-in hyperparameter optimization procedure—for example,
by incorporating adaptive strategies for clustering, which could
improve robustness across diverse data sets.

In summary, ALPINE’s flexible and interpretable framework
enables it to meet a wide range of analytical needs, providing ro-
bust performance across data sets with varying batch and condi-
tion complexities. As a scalable and versatile tool, ALPINE has
significant potential for advancing condition-specific studies in
diverse single-cell applications, offering researchers a powerful
method to uncover subtle biological patterns and interrelation-
ships within complex, heterogeneous data.

Methods

Overview

ALPINE aims to decompose a heterogeneous single-cell transcrip-
tomics data set into interpretable low dimensional components.
Specifically, a given single-cell sample is often associated with dif-
ferent technical batch effects and phenotypic conditions, which
we term ‘guided variables.” ALPINE jointly optimizes for the
decomposition of an input data set into guided and unguided
components and includes a built-in hyperparameter tuning frame-
work to efficiently select hyperparameters. A key principle of the
design of ALPINE is that there are no constraints on the relation-
ship between guided variables, but the unguided components
should capture shared biological signals across conditions and
not signals that are represented in the guided variables. As illustrat-
ed in Supplemental Figure 13, the guided embeddings each align
with their corresponding covariates, whereas the unguided em-
bedding captures cell-type variation not attributable to batch or
condition effects.

Label-guided matrix decomposition

Given a log-transformed single-cell RNA expression matrix X e
R™" where m is the number of genes and # is the number of cells,
ALPINE decomposes X into a nonnegative gene feature matrix We
R"™* and a cell embedding matrix H e R*", where k represents the
total number of latent components.

For a given guided variable, we define the corresponding

submatrices as ngided € R™ i and Hg,)lided € ngl'dcdx", ensuring
that the total
satisfies:y i, kg‘)nde
of user-specified guided variables.

Each component is uniquely associated with either a guided
variable or an unguided shared variation. In scenarios where cer-
tain guided variables are entirely confounded with each other
(e.g., each condition is exclusively sequenced in a distinct batch),
the corresponding guided variables become mathematically col-
linear (analogous to including perfectly correlated predictors in a
regression model). Practically, users can identify such cases during
data exploration by inspecting the overlap between covariates
(e.g., cross-tabulation of labels) or by checking for perfect correla-
tions in the design matrix. Domain knowledge of the study design
is helpful here, as collinearity often arises from experimental

number of components

a T Kunguided = k, where ¢ denotes the number
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choices such as sequencing each condition in a separate batch.
Under such situations, the model cannot uniquely partition the
variation between the different guided variables, leading to an
identifiability problem. To mitigate this, we recommend combin-
ing the confounded guided variables into a single composite vari-
able (e.g., merging separate “female” and “healthy” labels into a
combined “female + healthy” label) that captures their joint effect.
This approach allows ALPINE to extract the shared biological sig-
nal while reflecting limits imposed by the experimental design.

Overall, the matrices W and H are formed by concatenating
their respective submatrices

| | |
_ (1) (2) (©) .
W= nglnded Wg\llided ngllided Wun‘lgmded and
)
guided

(2)
ngided

— HO
guided

— Hunguided —
To effectively disentangle the signals of different guided variables
and shared cell information, ALPINE uses a binary guided indica-
tor matrix, Y® € R%*" for each guided variable i, where d; is the
number of classes for that variable. The primary goal is to ensure
that each cell embedding Hé’l)ﬁded encapsulates all relevant informa-
tion for nged- To achieve this, Hg'uided is used to reconstruct Y
through multiplication with a learned transformation matrix
B® € R%*wuw, The training objective function is thus a combina-
tion between the unsupervised reconstruction loss and supervised

prediction loss

C
L= argmin | |X—WHI} +) AKLYOBOHD ) +/(W)
X,Y,WHB>0| ————— T
reconstruction loss

prediction loss

@
Here, ||-||r represents the Frobenius norm that quantifies the recon-
struction error between the matrix X and its approximation WH,
and 4; is a hyperparameter that balances reconstruction and pre-
diction loss. KL represents the generalized Kullback-Leibler diver-
gence (Lee and Seung 2000), which is particularly suitable for
fitting the model to the binary condition matrix Y, as it quanti-
fies the discrepancy between the predicted probabilities and the
actual binary outcomes. We also include a regularization term, J
(W), to encourage the model to learn more unique and generaliz-
able signatures by incorporating elastic net regularization and or-
thogonality in the W matrix (Lin and Boutros 2020).

1 — My
JOW) = el YWy + S0 gy g3 wwy

g =

Elastic net regularization orthogonal regularization

@)
where hyperparameter o represents the weight for the Elastic net
regularization, and 1., is the weight balancing LASSO and
Ridge regularization. The final term, weighted by hyperparameter
B, computes the sum of the product of two signatures, where lower
values indicate lower similarity, promoting orthogonality.

The reconstruction loss optimizes for preservation of key bio-
logical information whereas the supervised prediction loss helps
disentangle signals from different guided variables into the desig-
nated components. For a given guided variable, examining the

submatrix Wé?xided shows the contribution of individual genes to

a low-dimension representation of the variable, whereas H;(;?lided
highlights the relative prevalence of the corresponding gene signa-
tures in each cell. The remaining components Wynguigea and
Hiynguidea Capture clean biological information that is consistent
across different batches or conditions, which can be used for clus-
tering cells or assigning cell types.

We derive the multiplicative updates for W, B, and H based on
Equation 1 (full derivation details in Supplemental Methods):

W<«Ww
o 2XHT

2WHH + ax(1 = atio) W+ BW (Lixk — i)+ atio* Lk’
3)

y® o T

(i) gy () guided
BO g B @

1y0H gl)lided
P:[Pl Py PS oHunguidcd]’ (S)
Q:[Ql Q - Qg OHungulded]' (6)
T

etio 2D o

In the multiplicative update of W, 1 and I denote the ones ma-
trix and the diagonal matrix, respectively. Here, 1y, represents a
matrix of ones with the same shape as Y, and 011,000 TEPTESENLES
a matrix of zeros with the same shape as Hynguidea- The supervised

learning wupdates P; and (Q; are formulated as Pi=
AT Y(l) AT
MB? | ———— 1 and Q;=X;B? 1,4, where P and Q represent
B (I)Hg\)lided

combinations of guiding adjustments derived from the prediction
loss associated with the guided variables. Because there are no la-
bels for the unguided components, we use zeros to fill the P and
Q submatrices. During the updating process, P and Q help regular-
ize H with guided label information, pushing the components to
be specific to each guided variable. The final output of ALPINE
are the final lower-dimensional representations W, H, and B that
compartmentalize shared biological information and different
phenotypic conditions.

Generalization to unseen data sets

Given an unseen data set, ALPINE can use pretrained W and B ma-
trices from a previous integration to generalize to new single-cell
data. For the new data set, we use the new counts (X,,.\) and iter-
atively update the new data set cell embedding H,., based on
Equation 7 (with Pand Q being matrices of Os). Note that, although
a corresponding indicator matrix (Ypew) can optionally be used to
update B® P and Q using Equations 4-6, we do not recommend
doing so to avoid potential overfitting.

Mini-batch training

A common limitation of existing matrix factorization approaches
for single-cell analysis is the extensive computational resources
required. As single-cell data sets grow, processing the entire expres-
sion matrix becomes increasingly time-consuming and memory-
intensive. To address this, ALPINE implements mini-batch train-
ing, which updates only a subset of cells at a time, thereby conserv-
ing training resources. We choose to deploy the mini-batch
strategy only on the cells space and not the feature space, because
by the nature of scRNA-seq data, the number of features (i.e., genes
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~20,000) is fixed and capturing gene-gene relationships is critical,
whereas the number of cells can be extremely large (ranging from
tens of thousands to millions). For reference, using full-batch train-
ing on a data set with 1 million cells would use more than 40 GB of
memory, making it infeasible for many GPUs, whereas mini-batch
training can be easily adapted for available hardware.

ALPINE supports two sampling strategies: (i) random sam-
pling, which shuffles the cells and ensures every cell is visited
once per epoch; and (ii) weighted sampling, which addresses im-
balances in guided variables.

In weighted sampling, for each cell, ALPINE calculates a
weight based on the overall class representation (concatenating

all guided variables), specifically weight(c) = , where m is

Z X m,
the total number of cells in the data set, z is the total number of
class groups, and m, is the number of cells annotated to class
c¢. Within each mini-batch, cells are then randomly sampled with
replacement based on these weights. This increases the representa-
tion of rare labels during training, although it does not guarantee
that every cell is seen in each epoch.W, H, and B are updated fol-
lowing Equations 3-7, but for H, in each step, only the subset of
cells that correspond to the selected batch is updated. By updating
the cell embedding matrix H using only a subset of cells in each
mini-batch, we reduce the computational burden and memory
footprint, also mitigating overfitting and reducing the potential
bias introduced by label imbalance in the guided variables. This
sampling strategy is analogous to stochastic gradient descent,
where updating parameters using subsets of data helps avoid local
minima and improves convergence speed.

Hyperparameter selection

The main hyperparameters of ALPINE include the number of com-

ponents for both guided (k(glgided, . k(g“gided
(Kunguidea) Variables, along with 4;, @, 8, and I1,,, from Equations
1 and 2. An additional hyperparameter is the number of epochs,
or iterations of multiplicative updates, we apply to optimize
ALPINE. To enhance user experience and reduce manual tuning,
we designed an optimization procedure to select hyperparameters,
where only ranges of values need to be provided for each hyperpara-
meter (we have default ranges as described below). For tuning the
number of components, only the range for the total number of
components, k, needs to be provided, and the optimization process
automatically allocates components between the guided and un-
guided parts.

Internally, given c representing the number of user-specified
guided variables, we consider the total number of components, k,
as being distributed among c+ 1 “parts,” that is, the ¢ guided vari-
ables and 1 unguided part. To tune for the specific number of com-
ponents in each part, every component, including the unguided

one, is assigned a proportion: ngnded for guided and Yunguidea for

) and unguided

unguided, with the constraint that 7§ ; ygaided + Yunguided = 1-
Furthermore, to ensure a sufficient number of unguided compo-
nents even as the number of user-provided guided variables in-

creases, we enforce Kynguided > Zf:1 kg&med, or equivalently,

1
Yunguided = 5 The optimization algorithm dynamically tunes the

component allocation following these constraints, making the
process more efficient and user-friendly.

Another optional hyperparameter is the maximum number of
iterations that the multiplicative updates in ALPINE should run. If
not specified, ALPINE performs a warm-up run with up to 200 iter-
ations and determines the maximum number of epochs automati-
cally by selecting the elbow of a polynomial curve fit on the

reconstruction loss curve using the Kneed package (Satopaa et al.
2011). Selecting the elbow on the polynomial curve rather than
the direct reconstruction values helps with robustness of elbow
detection, because it smooths potential variability from mini-batch-
ing. We use reconstruction loss for this procedure because the pre-
diction losses for batch or condition labels typically plateau earlier
than the reconstruction loss, reflecting the lower-dimensional na-
ture of these tasks compared to full data reconstruction. As a result,
monitoring prediction loss alone risks premature stopping before
sufficient reconstruction occurs (example in Supplemental Fig. 14).

Because ALPINE is designed to ensure that the unguided com-
ponents should capture shared biological signals across conditions
distinct from those specific to the guided variables, to optimize
the model’s hyperparameters, we assess whether Hynguideq has suc-
cessfully excluded residual guided information. Specifically, clusters
(Cunguidea) are derived from the Hypnguideq Matrix using the Leiden al-
gorithm (using the igraph implementation and default resolution of
1). We then compute both the adjusted rand index (ARI) and homo-
genenity score (HS) between these clusters and the guided variable
labels, averaging the scores across all guided variables. Because the
goal is to minimize the influence of guided labels on Hyngyigea, We
seek to minimize both ARI and HS. Minimizing ARI ensures that
the clustering of Hynguidea does not reflect the guided labels, while
minimizing the HS ensures that clusters are well-mixed with respect
to these labels. Together, the loss function being optimized is

1$ i 1$ i
Ltune = E Z ARI(Cunguided/ Yéll)lided) + E Z HS(Cunguided/ Yé‘&jded)'
i=1 i=1

®)

These hyperparameters are tuned with Bayesian optimization using
Tree of Parzen Estimators (Bergstra et al. 2013) from their corre-
sponding search spaces with 100 calls for the set of hyperparameters
that minimizes L. We use [10, 100] as our search space for k, the
total number of components. 4; can depend on the complexity of
the corresponding guiding variable i, so we use a large range [1,
10,000]. The default ranges for ¢, 8, and I1,,4, are [0, 100], [0, 1],
and [0, 1], respectively.

To gain a better understanding of ALPINE's sensitivity to dif-
ferent hyperparameters, we explore performance variability across
each of the major hyperparameters using three real data sets. Using
the optimized hyperparameter set from our optimizer, we vary one
hyperparameter at a time while keeping the others fixed. We find
that the optimizer consistently finds strong sets of hyperpara-
meters, and the hyperparameters that have the largest effect on
performance are the total number of components, the guided
(batch) component ratio, as well as the contribution of prediction
loss (4) (Supplemental Fig. 15). The optimal hyperparameter values
do vary across different data sets, highlighting the benefit of our
adaptive optimizer.

To further enhance the generalizability of ALPINE, we added
a cross-validation option to the optimization process. The training
data is randomly split into k folds. For each fold, we calculate Lyne
as described previously, selecting the hyperparameter set with the
smallest average Liyne. This cross-validation step helps ALPINE
generalize better to unseen data. We used threefold cross-valida-
tion for the simulation data set. For the benchmark and adipose tis-
sue data sets, we did not apply cross-validation, as those tasks do
not require applying trained ALPINE models to unseen data.

Data simulation for conditional gene detection
and batch removal

To demonstrate that ALPINE effectively separates diverse covariate
influences, including both phenotypic conditions and batch
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effects, we used the Symsim tool (Zhang et al. 2019) to simulate
40,000 cells with 500 genes generated from a phylogenetic tree
with 16 distinct cell types as ground truth, including a simulated
“rare” cell type with ~200 cells and all other cell types having sim-
ilar sizes (~1400-1600 cells). Batch effects were introduced using
Symsim with default parameters (batch effect size=1). We also in-
troduced two condition covariates: “stimulation” (comprising
control and stimulation) and “severity” (encompassing healthy
and severe states), yielding four condition combinations (Fig.
2A). We randomly assigned each cell a “stimulation” and
“severity” label, giving each covariate a 50-50 chance for their re-
spective labels.

Perturbations were simulated by upregulating 100 randomly
selected genes per condition (200 total per scenario) to an average
two-fold increase in expression, with slight variability around the
fold-change. We considered four perturbation scenarios: naive,
overlap, two-pattern, and cell-specific. In the naive scenario, per-
turbations to gene expression are applied uniformly on the ran-
domly selected genes. The overlap scenario models cases where
both conditions influence a subset of the same genes. In the
two-pattern scenario, the stimulated and control conditions per-
turb different genes, whereas the severe condition perturbs the
same genes. Finally, the cell-specific scenario is the most complex,
as it involves selective perturbing of cell types, thus simulating
condition effects within only specific cell populations.

We also varied the extrinsic variability of cell expression for
the naive and cell-specific scenarios, which equates to changing
the o hyperparameter in Symsim. Under the hood, Symsim uses
a simulated phylogenetic tree to simulate single-cell expression.
o controls the standard deviation of the phylogenetic tree position
for each cell. Higher o leads to greater heterogeneity, which can ob-
fuscate cell-type differences. The default value for o is 0.4, and we
have extended the values to 0.6, 0.8, and 1.0.

Identifying genes associated with specific covariates and affected
cell types

Recomposing the various decomposed matrices allows for inter-
pretable analysis of resulting associations. To systematically ex-
tract genes associated with covariates, we consider a general
covariate with corresponding label matrix Yé’&ided and signature
matrix Hé’f‘ided. We quantify the association between latent signa-
tures and covariate-related labels by computing

() o 7

A(,’) __ “guided ~ guided
- (@) ’
Zi (Yguided)_j

where the denominator normalizes by the number of samples as-
sociated with each label, and j indexes the labels. The resulting ma-
trix A® captures the strength of association between signatures
and covariate labels.

We can further utilize the association matrix A to compute
the gene signatures associated with specific labels. By multiplying
W with A®, where the result has dimensions corresponding to
genes and labels, we obtain our covariate-associated gene signa-
tures matrix. Each column in this matrix represents a signature as-
sociated with a particular label.

Additionally, the WgaidedHéﬂided matrix offers insights into the
relationships between genes and corresponding cells, enabling us-
ers to explore the effects of various conditions on cells.
Alternatively, users may investigate the Hé?lidedYJnguided matrix to
uncover associations between guided variables and labels, provid-
ing a comprehensive understanding of condition-associated signa-
tures and their impact across cell populations.

Performance evaluation metrics for model assessment and
identifying condition-associated genes

To provide objective comparisons of the performance of different
tools, we use the adjusted rand index, normalized mutual informa-
tion (NMI), and average silhouette width (ASW) to evaluate how
well cells are blended across different conditions. Ideally, for cell
clustering, ARI and NMI scores close to 1 indicate that each cluster
contains only one type of cell, reflecting pure clusters. However,
for assessing guided variables, the goal is to have cells from differ-
ent conditions and batches be well-blended, so to calculate a single
performance metric, we report 1 — ARIg;qeq, Where a value closer to
1 represents better mixing of conditions or batches. We use the
transformation from scIB (Luecken et al. 2022) to process the
ASW score, mapping both batch and cell-type ASW to a 0-1 range,
with higher values indicating better performance. To prevent ma-
jority cell types from dominating the results, the final batch ASW
score is weighted by number of cells in a cell type.

For easier representation when there are situations with mul-
tiple batches and conditions, we adopted the F1 score equation
from Tran et al. (2020) to evaluate the performance for removing
batch effects while retaining cell-type information:

ARIunguided X 1_[ 1- ARIgL)nded)
Flaw = (€ +1) x - : ©)
ARIunguided + ; (1 - ARIgl)Jided)’

where c is the number of guided variables, which includes both
batch and condition variables. The F1 score for the normalized
mutual information follows the same formula as the ARI, with
ARI values simply replaced by their corresponding NMI values.

Both ARI and NMI require evaluation on clustering results. To
address this, we employed two strategies: (1) k-means clustering by
specifying the known number of cell types and then using the k-
means results to compute ARI and NMI with scIB (Luecken et al.
2022); or (2) Leiden clustering with a default resolution of 1. For
the comparisons using counts rather than embeddings, we clus-
tered the counts directly and then used the same metrics for eval-
uations. The clustering approach used for each analysis is specified
in the corresponding legend.

To evaluate each tool’s ability to identify true condition-asso-
ciated genes, we calculated the area under the precision-recall
curve (AUPRC), comparing each tool’s top-weighted genes against
ground-truth perturbations. For scDisInFact, we directly used the
weights provided by the tool. In order to run scParser on the sim-
ulation results without crashing, we encoded stimulation and
severity into a single composite label (e.g., control +severe). To
score recovery of genes for a given condition label (e.g., “severe”),
we computed the AUPRC between the relevant set of composite
signature’s gene weights and the ground-truth perturbed gene
set for that level and reported the highest AUPRC across signatures
as scParser’s performance, which is essentially an upper-bound
estimate.

Benchmarking existing condition disentangling methods

We attempted to compare ALPINE to existing condition disentan-
gling methods: biolord (Piran et al. 2024), scDisco (Liu et al. 2024),
scDisInFact (Zhang et al. 2024), scINSIGHT (Qian et al. 2022), and
scParser (Zhao et al. 2024). Unfortunately, we were unable to suc-
cessfully instantiate a biolord model for training and downstream
analysis. We also repeatedly encountered NaNs when attempting
to run scDisco, so we were unable to obtain comparable results.
Meanwhile, scINSIGHT required extensive training time (>24 h)
even on small data sets. As such, these three methods were
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excluded from downstream comparisons. We also note that, al-
though scParser is conceptually designed to handle multiple batch
and covariate inputs, we encountered an index out of bounds issue
from their C++ implementation when providing inputs in that
way; we did discover that we could combine multiple condition la-
bels into a single covariate to run scParser successfully and thus
used it in this way. We adhered to the recommended hyperpara-
meter settings for scDisInFact and used the optimization function
in scParser to identify optimal parameters. To obtain reconstructed
counts using scDisInFact, we found that the predicted counts func-
tionality requires batch and covariate labels to be provided. We ob-
served that, when using the default values of None for both batch
and covariate, the predicted counts performed very poorly, but us-
ing “control” and “healthy” as the reference labels (which theoret-
ically do not include perturbation effects) consistently performed
better. Thus, we used “control” and “healthy” as the given labels,
and None for the batch label for all comparisons of scDisInFact’s re-
constructed counts.

Comparisons against differential gene expression analysis

To minimize variability in single-cell gene expression, we con-
structed pseudobulk replicates using the decoupler package
(Badia-i-Mompel et al. 2022). For each cell type, we aggregated
counts from randomly sampled cells to generate 10 pseudobulk
replicates, each representing the sum of gene expression across a
subset of cells. We compared using either ComBat (Johnson
et al. 2007) or Scanorama (Hie et al. 2019) for batch correction
(as well as not using batch correction at all). We then compared us-
ing either a Wilcoxon rank-sum test or t-test for differential gene
expression analysis in each of the simulated data sets. Note that,
for differential gene expression analysis, we can only compare
groups of pseudobulk samples within cell types, so we get one
set of gene weights per cell type (vs. disentanglement methods,
which provide gene weights per condition/label). The AUPRC for
identifying known perturbed genes was calculated using the log
fold-change.

Benchmarking existing batch removal tools

We compare ALPINE to seven existing single-cell batch removal
methods—Seurat (Stuart et al. 2019), Harmony (Korsunsky et al.
2019), LIGER (Liu et al. 2020), scVI (Lopez et al. 2018),
Scanorama (Hie et al. 2019), MNN (Haghverdi et al. 2018), and
ComBat (Johnson et al. 2007)—and two condition-disentangling
methods, scParser (Zhao et al. 2024) and scDisInFact (Zhang
et al. 2024), for batch effect removal tasks. Using SCANPY (Wolf
et al. 2018), we filter out genes present in fewer than five cells
and cells expressing fewer than 300 genes in each data set. For
models assuming a zero-inflated negative binomial distribution,
such as scDisInFact and scVI, we provide raw counts as input.
For Seurat, Harmony, LIGER, and scParser, we provide log-trans-
formed data as required. For scDisInFact, which requires an addi-
tional condition beyond batch for execution, we create a dummy
condition by assigning the same label to all cells.

Data preprocessing and analysis for the brain cancer data set

The brain cancer data set (Abdelfattah et al. 2022) consists of
201,986 single cells from 18 patients, including glioma, immune,
and stromal cells. We obtained the preprocessed data set from the
Single Cell Portal (Tarhan et al. 2023) and selected the top 2000
highly variable genes, with patient identity as the batch variable.
We randomly subsampled 50,000 cells stratified by patient for
benchmarking. In addition to patient, this data set includes covar-
iates for sex and cancer type, and we included all three as guided

covariates to ALPINE and scParser. scDisInFact requires distin-
guishing between batch versus covariates of interest, so we desig-
nated patient as batch and sex and cancer type as covariates of
interest. We evaluated cell clustering using the same metrics as
in the simulations; beyond ARI and NMI, we also calculated
1-ARI/1-NMI to evaluate batch and covariate mixing. To identify
genes associated with each provided label, we extracted all nonzero
gene weights from each method and standardized them as
Z-scores. To compare the overlap of top-associated genes from
each method using upset plots (Conway et al. 2017), we used a
1.96 Z-score threshold (corresponding to P-value=0.05 in a two-
sided test or P-value=0.025 in a one-sided test). This process is rel-
atively straightforward for ALPINE, which provides nonnegative
gene weights. The gene weights for scParser can be positive or neg-
ative, so we opted to create two separate lists to preserve the sign in
downstream comparisons: one for positive gene scores where Z >
1.96 and another for negative gene scores where Z<-1.96.
scDisInFact already provides functionality to consider both posi-
tive and negative values to transform the raw weights into nonneg-
ative scores, but as we have already previously mentioned, it can
only identify covariate-level associations and not genes associated
with each label. Thus, we used the same covariate-associated genes
for comparison for the label-associated genes from ALPINE and
scParser. For example, when comparing male- and female-associat-
ed gene lists, scDisInFact uses the sex-associated genes that they
find for both.

Data preprocessing and analysis for the adipose tissue data set

The adipose tissue data set (Emont et al. 2022) includes both hu-
man and mouse data, sequenced on two platforms, single-cell
RNA-seq and single-nucleus RNA-seq, with 166,149 human cells
and 197,721 mouse cells initially collected. For analysis, we sub-
sampled 50,000 cells from each species, totaling 100,000 cells
(27.48% of the data set). To combine the two species’ single-cell
data, we used orthologous gene mapping, which yielded 15,417
shared genes. The combined data was then normalized and log-
transformed to unify library sizes across species. We use the provid-
ed batch (i.e., organism) and biological condition variables (i.e., as-
say, sex, depot tissues) as guided variables to ALPINE for signal
decomposition. When attempting to compare with scParser, the
package would crash whenever we would try running it with the
full set of labels (one batch and three covariates), so we were unable
to include these comparisons. In comparing our results with those
of scDisInFact, we used the same guided labels and designated the
assay as the primary batch, while treating the remaining variables
as covariates of interest for training the scDisInFact model. To ex-
tract important genes associated with labels from scDisInFact, we
first transformed the gene scores into Z-scores, then calculated
the corresponding P-values, followed by false discovery rate
(FDR) correction. We applied the same procedure to the gene sig-
natures identified by ALPINE and used an FDR threshold of
<0.0S to select significant genes.

Software implementation

ALPINE is built on top of the SCANPY ecosystem, so all data struc-
tures and matrix operations are native SCANPY AnnData objects.
We also provide utility functions to export the guided and unguid-
ed embeddings (and associated gene weights), as well as recon-
structed counts into Seurat-compatible formats, enabling
seamless downstream analysis in either SCANPY or Seurat
workflows.
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Software availability

Our implementation of the ALPINE package is available at GitHub
(https://github.com/ylaboratory/ALPINE), with additional analy-
sis code and tutorials available at GitHub (https://github.com/
ylaboratory/ALPINE-analysis), both released under the BSD
3-clause license for open source use. We also include a snapshot
of the repositories as Supplemental Code.
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