
A best-match approach for gene set analyses
in embedding spaces

Lechuan Li, Ruth Dannenfelser, Charlie Cruz, and Vicky Yao
Department of Computer Science, Rice University, Houston, Texas 77005, USA

Embedding methods have emerged as a valuable class of approaches for distilling essential information from complex high-

dimensional data into more accessible lower-dimensional spaces. Applications of embedding methods to biological data

have demonstrated that gene embeddings can effectively capture physical, structural, and functional relationships between

genes. However, this utility has been primarily realized by using gene embeddings for downstream machine-learning tasks.

Much less has been done to examine the embeddings directly, especially analyses of gene sets in embedding spaces. Here, we

propose an Algorithm for Network Data Embedding and Similarity (ANDES), a novel best-match approach that can be used

with existing gene embeddings to compare gene sets while reconciling gene set diversity. This intuitive method has impor-

tant downstream implications for improving the utility of embedding spaces for various tasks. Specifically, we show how

ANDES, when applied to different gene embeddings encoding protein–protein interactions, can be used as a novel overrep-

resentation- and rank-based gene set enrichment analysis method that achieves state-of-the-art performance. Additionally,

ANDES can use multiorganism joint gene embeddings to facilitate functional knowledge transfer across organisms, allowing

for phenotype mapping across model systems. Our flexible, straightforward best-match methodology can be extended to

other embedding spaces with diverse community structures between set elements.

[Supplemental material is available for this article.]

Methods to build embedding representations have becomeubiqui-
tous in diverse fields spanning text-based (Church 2017; Devlin
et al. 2019), image-based (Dosovitskiy et al. 2020; Khrulkov et al.
2020), and domain-specific (Zhang et al. 2016; Du et al. 2019;
Ma et al. 2020; Stanojevic et al. 2022; Li et al. 2023; Theodoris
et al. 2023) applications. In addition to the computational benefits
that lower-dimension embedding representations provide, there is
an implicit assumption that a quality embedding amplifies the im-
portant signal in the data while reducing noise. In the biomedical
realm, gene embeddings are gaining traction as a valuable ap-
proach for predicting function (Kulmanov et al. 2018; Kulmanov
and Hoehndorf 2020; Gligorijević et al. 2021), disease associations
(Xiong et al. 2019; Yu et al. 2021), expanding gene set representa-
tions (Chen et al. 2018; Wang et al. 2020), among other applica-
tions (Gao et al. 2018; Kim et al. 2018; Mostavi et al. 2020;
Bryant et al. 2022).

Given the utility of gene embeddings for downstream ma-
chine-learning tasks, it is intuitive that gene embeddings capture
important gene–gene relationship information (Fig. 1A).
However, little attention is paid to exploring the resulting embed-
ding spaces, especially for the analyses of gene sets. In standard ge-
nomics analyses, gene sets (e.g., a set of differentially expressed
genes, reported genes from genome-wide association studies
(GWAS), or even a group of genes annotated to a particular path-
way) are often a fundamental “functional unit.” Comparisons be-
tween sets are very routine, including gene set enrichment analysis
(GSEA) (Subramanian et al. 2005; Hahne et al. 2008), disease-gene
associations (Wang et al. 2011; Yao et al. 2018), and drug repurpos-
ing (Peyvandipour et al. 2018; Reay and Cairns 2021). Yet, there

appears to be limited to no research considering gene set compar-
isons in the context of embedding spaces.

Here, we present an Algorithm for Network Data Embedding
and Similarity (ANDES) analysis (Fig. 1). The goal of ANDES is to
calculate an interpretable measure of gene set similarity that ac-
counts for the presence of functional diversity. Toward this end,
ANDES identifies best-matching (most similar) genes between
two sets reciprocally and calculates a score based on the embed-
ding distances between these best-match similarities (Fig. 1B).
This best-match concept has parallels to an earlymethod proposed
for biological text mining (Azuaje et al. 2005), but functional anal-
yses in embedding spaces require adjustments for biases due to
gene set cardinalities. ANDES thus further incorporates a statistical
significance estimation procedure that estimates the null distribu-
tion throughMonte Carlo sampling to ensure comparable similar-
ity estimations across different pairs of sets.

Outside of biological use cases, previous methods to summa-
rize set relationships in embedding spaces typically consider vari-
ations of averaging embedding information across set members,
ultimately ignoring the potential diversity within the set. One
such averaging approach simply uses the centroid of all considered
entities in the embedding space (Wieting et al. 2015; Lin et al.
2023). However, gene sets, especially ones of interest, often con-
tain a mixture of signals (e.g., a disease-associated gene set may in-
clude dysregulated genes from several pathways). The similarity
calculated from two gene set centroids would fail to consider dif-
ferent subfunctional groups in the gene set and instead obscure
this signal, especially when the subgroups are distinct. Though
network-based gene set comparison methods have typically not
been applied to embedding spaces, they can sometimes transfer
to this domain. One such network-based method formulates the
gene set comparison problem as a t-test between the two gene
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sets, with a permutation-based background correction for the size
of each gene set (Greene et al. 2015). However, although the cor-
rected t-test method does take into account the variability of the
gene set, it is ultimately still anchored in a comparison of means.

Gene set enrichment is a natural extension of the set match-
ing abilities of ANDES. Gene set enrichment methods fall into
two main classes: overrepresentation-based approaches (Hahne
et al. 2008) and ranked-based approaches (Kim and Volsky 2005;
Subramanian et al. 2005), of which hypergeometric test and
GSEA are, respectively, representative methods (Subramanian
et al. 2005). One of the fundamental limitations of both categories
of methods is a complete reliance on gene annotations (e.g., func-
tional annotations in the Gene Ontology [GO]); if a gene has no
annotations, it cannot contribute to the enrichment analysis.
Considering genes in functionally meaningful embedding spaces
is one way to circumvent this limitation. ANDES can be used
directly as an overrepresentation-based approach, and we also ex-
tend ANDES’ best-match approach for rank-based gene set enrich-
ment (Fig. 1C).

Other recent methods that attempt to lessen the dependency
of gene set enrichment on existing annotations include Network-
based Gene Set Enrichment Analysis (NGSEA), which reranks the
input gene list by incorporating themean of its network neighbors
(Han et al. 2019), and Gene Set Proximity Analysis (GSPA), which
allows users to supplement gene set annotations using a radius in
an embedding space (Cousins et al. 2023). Unfortunately, we are
unable to systematically evaluate NGSEA because it is only avail-
able as a web portal, and we cannot change the underlying gene
sets used.

Through a series of evaluations, we demonstrate that ANDES
can better estimate gene set functional similarity in gene embed-
ding spaces compared to existing average-based methods.
Furthermore, ANDES outperforms previous methods for gene set
enrichment, and we also showcase its ability to prioritize new can-
didates for drug repurposing. Overall, we find that leveraging the
intuition of best-match comparisons is an effective, generalizable

approach that has important implications for interpretable analy-
ses of embedding spaces.

Results

ANDES outperforms other set comparison approaches

by effectively capturing substructure within gene sets

We first explore the extent to which ANDES and other set compar-
isonmethods can recover “functionallymatched” gene sets in em-
bedding spaces. “Matched” gene sets describe the same biological
processes across different databases, such as Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and GO biological process-
es. When examining these gene sets in an embedding space that
captures gene relationships, we expect a good set comparison
method to identify these matches. We note that the same process
described in KEGG and GO can naturally have overlapping genes,
which would alter this set matching problem into an easier one
primarily driven by set overlap. To prevent this, we only keep over-
lapping genes in the KEGG gene sets and remove them from GO
gene sets. We compare ANDES against the mean embedding,
mean score, and corrected t-score methods. Mean embedding
and mean score are two intuitive approaches for set comparisons
in embedding spaces, and the corrected t-score method has been
used for set comparisons in functional network representations
(Greene et al. 2015). To the best of our knowledge, these represent
the current scope of embedding set comparison methods, high-
lighting the lack of method development for this problem.

All set comparison approaches are agnostic to the type of em-
bedding method used. To see if the type of embedding impacts
performance, we use three different methods to generate gene em-
beddings froma protein–protein interaction (PPI) network: node2-
vec (Grover and Leskovec 2016), NetMF (Qiu et al. 2018), and a
structure-preserving autoencoder method based on the architec-
ture in Li et al. (2023). ANDES consistently outperforms other
methods and successfully identifies gene sets with similar
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Figure 1. Overview of ANDES. (A) A UniformManifold Approximation and Projection (UMAP) plot (McInnes et al. 2018) of the node2vec gene embed-
ding for a human protein–protein interaction network with a set of Alzheimer’s disease genes (hsa05010) highlighted. Within this set of disease genes,
several subclustered biological processes representing diverse biological functions are scattered across the embedding space. ANDES is capable of consid-
ering this functional diversity whenmatching gene sets. (B) Overview of the ANDES set similarity framework. Given two gene sets, ANDES first calculates the
pairwise cosine similarity between every gene in each of the two sets. Based on the underlying similarity matrix, ANDES finds the best match for every gene
(in both directions), and then calculates the weighted average (taking into account gene set size) to yield a single score. Statistical significance is estimated
using a cardinality-aware null distribution. (C) Overview of the ANDES rank-based gene set enrichment method. Given a ranked gene list based on an ex-
perimental result and a known gene set, ANDES calculates the best-match similarity for every gene in the ranked list. Walking down the ranked list, ANDES
finds the maximum deviation from the running sum. The final enrichment score is also estimated using a cardinality-aware null distribution.
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functional roles, regardless of the underlying gene embedding
method (Fig. 2A). More specifically, ANDES significantly
outperforms the mean score (node2vec: P = 1.84× 10−6, NetMF:
P=2.75×10−3, neural network [NN]: P=3.14×10−5, Wilcoxon
signed-rank test) and corrected t-score method (node2vec: P=
7.56×10−6, NetMF: P=2.06×10−4, NN: P=2.23×10−7, Wilcoxon
signed-rank test). ANDES also significantly outperforms the
mean embedding method for the node2vec and autoencoder em-
bedding methods (node2vec: P=0.039, NetMF: P=0.117, NN: P=
0.015, Wilcoxon signed-rank test), and in general, ANDES is more
stable. We note that if we do not remove the overlapping genes
between matching KEGG and GO terms, ANDES shows an even
larger performance advantage compared to existing methods
(Supplemental Fig. S1).

Practically, we observe that themean embeddingmethod can
have more extreme failure cases compared to all other methods,
likely due to the inherent limitation of collapsing information
from all genes in the gene set into a singlemean embedding before
subsequent comparisons. As an example,we showone specific fail-
ure of mean embedding that occurs with a matched pair of KEGG
and GO terms (KEGG: hsa00071-fatty acid degradation, GO:
GO:0009062-fatty acid catabolic process) (Fig. 2B). A direct inspec-
tion of the distribution of each gene set’s genes in the embedding
space (Fig. 2B) quickly reveals that the correct KEGG–GO match
has distinctly more similar embeddings, which ANDES can cor-
rectly identify and mean embedding cannot. Both the mean score

and corrected t-score methods also rank the correct term higher
than the mean embedding method.

Because ANDES’ best-match framework is not limited to using
only embeddings as input, we also examine the extent to which
matching gene sets can be identified using naive nonembedding
network-only approaches, such as shared neighbor profiles, graph
diffusion, and node degrees, using the original PPI network.
Because these approaches do not use embeddings, it is impossible
to calculate mean embeddings for the following comparisons.
Using the Jaccard index of shared neighbors between two genes
also captures sufficient functional signal to identify several correct
KEGG–GO matches. In this setup, ANDES still significantly out-
performs the mean score (P=1.22×10−5, Wilcoxon signed-rank
test) and corrected t-score (P=2.19×10−4, Wilcoxon signed-rank
test) methods (Fig. 2C).We observe similar performance trends us-
ing a heat diffusion kernel on the PPI network, though the differ-
ence between ANDES and mean score is not significant (mean
score: P=0.158, corrected t-score: P=4.12×10−5) (Supplemental
Fig. S2). Although both shared neighbor profiles and heat diffu-
sion clearly capture functional signal, we note that using embed-
ding approaches such as node2vec as input still leads to
better performance (Jaccard: P=6.52×10−3, heat diffusion: P=
7.82×10−3, Wilcoxon signed-rank test). Using a more naive expo-
nential diffusion kernel and the simple sum of node degrees in the
PPI network to measure gene similarity results in nearly random
performance for all three methods explored in this comparison.

In general, we observe that although
ANDES can be successfully applied to
these nonembedding approaches, the
sparsity in the resultant PPI similarity
matrix may be a limiting factor. Unlike
gene similaritymatrices based on embed-
ding spaces, gene pairs with weak re-
lationships have scores of zero using
nonembedding approaches, which de-
creases the stability of the results.
Altogether, this set of analyses demon-
strates that the application of ANDES is
not limited to only embedding spaces,
but ANDES’ performance improves with
the informativeness of the similarity ma-
trix that is used as input.

ANDES as a novel overrepresentation-

and rank-based gene set enrichment

method

Because ANDES is a general framework to
compare sets, comparing a single gene
set of interest against a collection of an-
notated gene sets (e.g., KEGG) is directly
comparable to existing overrepresenta-
tion-based approaches. We also further
extend ANDES to handle comparisons
of a ranked list of genes to gene sets,
which allows ANDES to be used as a
rank-based gene set enrichment ap-
proach (Fig. 1C).

Here, our evaluations use a well-
established gene set enrichment bench-
mark (GEO2KEGG [Tarca et al. 2013]).
GEO2KEGG annotates differential
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Figure 2. ANDES better matches gene sets that describe the same biological processes regardless of
the underlying embedding or network structure. (A) Boxplots of the ranking of the correct matching
GO term for 50 KEGG terms demonstrate that ANDES outperforms the mean embedding, corrected t-
score, and mean score methods across three network embedding approaches (node2vec, NetMF,
NN). NN is a structure-aware autoencoder method (Methods). We also note that the handful of
KEGG–GO pairs where ANDES performs poorly have consistently poor performance across methods
(e.g., none of the five ANDES outlier KEGG terms in node2vec achieve a better ranking in any other meth-
ods). (B) UMAP of the node2vec PPI network embedding of genes in the KEGG fatty acid degradation
gene set highlights a failure of the mean embedding method to capture meaningful substructure.
Inspection of the embedding space reveals a similar substructure between the correct KEGG–GO term
match prioritized by ANDES that is not seen in the top match for the mean embedding method. (C)
Baseline approach for gene set matching in PPI networks. Matched KEGG–GO terms are ranked using
pairwise similarity based on gene neighbor Jaccard similarity (Jaccard), or more naively, by the sum of
node degrees (degree). Because these pairwise similarity matrices are directly calculated from network
properties without using embeddings, we cannot calculate the mean embedding method and instead
compare ANDES to only the corrected t-score and mean score.
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expression results (including FDR and log-fold-change per gene) to
related pathways for 42 microarray studies, covering over 200
KEGG pathways. The rich data in GEO2KEGG enables us to test
the recovery of corresponding KEGG pathways for each data set
through overrepresentation-based enrichment (using significance
or fold change cutoffs) as well as rank-based gene set enrichment
(by ranking all genes based on their fold changes). For the overrep-
resentation case, we compare ANDES’ performance with the hy-
pergeometric test (Hahne et al. 2008), considering gene sets of
interest as differentially expressed genes per data set (FDR≤0.05,
keeping gene sets that are larger than 10 genes as is standard prac-
tice for overrepresentation analysis). In 22 out of 31 cases (71%
data sets), ANDES set enrichment outperforms the hypergeometric
test for KEGG pathway identification (P=6.78×10−4, Wilcoxon
signed-rank test) (Fig. 3A). For the rank-based version, we compare
ANDES with GSEA (Subramanian et al. 2005) and the embedding-
based gene set enrichment method, GSPA (Cousins et al. 2023).
Aggregating performance across all 42 data sets in the benchmark,
ANDES’ rank-based gene set enrichment significantly improves
over both GSEA (P=0.041; Wilcoxon signed-rank test) and GSPA
(P=0.028; Wilcoxon signed-rank test) (Fig. 3B). In general, we ob-
serve that ANDES consistently performs better than other meth-
ods, but especially when the original data set has more samples
(Supplemental Fig. S3). We thus also wanted tomore carefully per-
form the enrichment analysis while ameliorating potential biases
due to differing differential expression signals in the original
GEO2KEGG data sets. Thus, for data sets with sufficient samples,

we also further compute empirical P-values for enrichment scores
by comparing against an estimated null distribution of the same
data set generated using 100 different condition label permutations.
ANDES still outperforms GSEA (P=0.060; Wilcoxon signed-rank
test) and GSPA (P=0.041; Wilcoxon signed-rank test) (Fig. 3C,
Supplemental Fig. S4), demonstratingANDES’ ability of better prior-
itizing relevant functions based on true differential signals.

Together, these results highlight ANDES’ utility as a novel
state-of-the-art method for overrepresentation-based and rank-
based gene set enrichment. Furthermore, because ANDES uses
gene embeddings, enrichment analyses can be performed in cases
where existing annotations have low or even no overlap with the
genes of interest, making it particularly valuable for the overrepre-
sentation case.

ANDES can be used to recapitulate known relationships between

drugs and prioritize new candidates for drug repurposing

To highlight how ANDES can be used to discover new biology, we
use ANDES to match disease gene sets from Online Mendelian
Inheritance inMan (OMIM) (Hamosh et al. 2005) with drug target
genes from DrugBank (Wishart et al. 2018). This is a use case of
practical importance, because the drug designing process for new
compounds is quite laborious, involving many layers of develop-
ment to ensure compound safety, delivery, efficacy, and stability.
Thus, a computational effort that can potentially be used to repur-
pose a vetted compound can greatly help accelerate the

A B C
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Figure 3. ANDES achieves state-of-the-art performance in overrepresentation-based and rank-based gene set enrichment for the GEO2KEGG (Tarca et al.
2013) gene set enrichment benchmark. (A) Performance comparison between ANDES and hypergeometric test in retrieving annotated KEGG terms using
genes that have FDR≤0.05 in each data set (where there are at least 10 genes that are significantly differentially expressed). (B) Performance comparisons
between ANDES, GSEA (Subramanian et al. 2005), and GSPA (Cousins et al. 2023) in retrieving annotated KEGG terms using the full list of genes (no FDR
cutoff), ranked by log2(fold change). In both cases, ANDES statistically outperforms other methods, demonstrating the advantage of incorporating gene em-
bedding information using the best-match principle into the gene set enrichment setting. (C) Performance comparisons between ANDES, GSEA, and GSPA
with empirically estimated P-values in retrieving annotated KEGG terms. Only expression data sets with at least 10 samples in both normal and diseased con-
ditions (21 data sets) are included for sufficient variability in label permutations. Corrected-ANDES still outperforms corrected-GSEA and corrected-GSPA.
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development of new therapies. We first calculate a disease similar-
ity profile for drugs using their ANDES scores, then apply dimen-
sionality reduction using principal component analysis (PCA) on
these profiles (Fig. 4A; Supplemental Fig. S5). We see that there
are several “nervous system” drugs that aremore distinct than oth-
ers, as well as a subgroup that has overlap with other classes, in-
cluding drugs that are “antineoplastic and immunomodulating
agents.”

As a proof of concept for highlighting avenues for drug repur-
posing, we take a closer look at the “antineoplastic and immuno-
modulating agents,” examining the ANDES gene set similarity
scores for all drugs in this class (Fig. 4B). Results for the other
drug classes can be found in Supplemental Figures S6–S17. Only
diseases and drugs with at least one significant match (z>1.64)

are kept. Besides the most apparent cluster of cancers, ANDES
also captures potentially novel indications or potential side effects.
For example, ANDES predicts a strong association between obesity
and two drugs, Histamine and Gilteritinib, which are well-docu-
mented associations. Specifically, Histamine can decrease hunger
by affecting the appetite control center in the brain (Jørgensen
et al. 2007), and weight gain is a listed side effect of Gilteritinib
(Perl et al. 2022). Although these are all known relationships,
ANDES also predicts less-documented, potentially novel drug-dis-
ease relationships, such as a link between Fingolimod and schizo-
phrenia. As recently as 2023, Fingolimod has been examined in
rats for its potential to reverse schizophrenia phenotypes (Yu
et al. 2023). We observe a similar association between Sirolimus
and macular degeneration. Sirolimus is an immunosuppressive

Z-score

A B

Figure 4. Analysis of drug–disease relationships using ANDES. (A) PCA plot of the first three principal components (PCs) showing the relationship be-
tween drugs based on their association with diseases. Colors are based on the first level of ATC groups. The first three PCs explain 32.2%, 18.2%, and
10.4% of the total variance, respectively. (B) Heatmap of ANDES gene set similarity Z-scores (darker color indicates higher Z-score) between diseases
and drugs in the “antineoplastic and immunomodulating agents” therapeutic class. Diseases and drugs that have at least one association (Z-score >
1.64) are retained, yielding a heatmap of 18 diseases and 54 drugs.
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agent used to prevent transplant rejec-
tion, but as of 2021, it has been found
to have emerging promise as a therapeu-
tic for age-related macular degeneration
(Suri et al. 2021). These two seemingly
disparate indications likely share an
inflammatory pathological pathway,
which can be picked up with ANDES.

ANDES can be effectively used with

other types of gene embeddings, such

as cross-organism embeddings for

increasingly complex biological insights

Wehave already shown that ANDES’ per-
formance is agnostic to the underlying
embedding used, making it a modular
framework. To make it evenmore power-
ful, we swap the human PPI-based gene
embeddings for joint cross-organism
gene embeddings using our previously
published network embedding align-
ment method, Embeddings to Network
Alignment (ETNA) (Li et al. 2023). This
analysis highlights two general princi-
ples: (1) ANDES can still prioritize rele-
vant signals when the underlying gene
embedding is structurally more complex
and (2) the scope of new biological in-
sights can be expanded with the use of
different embeddings.

Beyond showcasing the power of
ANDES, being able to successfully map
coordinated gene sets, such as pathways and processes between
model organisms andhumans, is an important problem.Model or-
ganisms are critical for studying aspects of human biology that are
technically infeasible or unethical to study directly. Thus, improv-
ing functional knowledge transfer increases the potential impact
of model system study.

To determine if ANDES can aid in functional knowledge trans-
fer, we use ETNA to build three pairwise joint gene embeddings
between humans and three model organisms: Mus musculus,
Drosophilamelanogaster, andCaenorhabditis elegans. ETNA’s joint em-
bedding space enables the calculation of a similaritymatrix for genes
across species. Because genes across organisms can be annotated to
the same GO terms, we can also evaluate to what extent the same
GO term is prioritized in human when using the species-
specific annotations in model organisms. For all three model organ-
isms,ANDESconsistentlyoutperformsthemeanembedding(M.mus-
culus: P = 4.30× 10−10, D. melanogaster: P=0.147, C. elegans:
P = 2.28× 10−3,Wilcoxonsigned-rank test),mean score (M.muscu-
lus: P = 1.01× 10−25,D. melanogaster: P = 1.19× 10−3, C. elegans:
P = 9.88× 10−4, Wilcoxon signed-rank test), and corrected t-score
(M. musculus: P = 3.66× 10−25, D. melanogaster: P = 3.62× 10−3,
C. elegans: P = 2.27× 10−4, Wilcoxon signed-rank test) (Fig. 5A).

When we group the GO terms shared between human and
M. musculus by size, ANDES shows better performance, both
when the gene set is large (mean embedding: P=0.023, mean
score: 5.39× 10−11, corrected t-score: 1.96 ×10−12, Wilcoxon
signed-rank test) and small (mean embedding: P = 5.91× 10−9,
mean score: 8.18× 10−17, corrected t-score: 1.55 ×10−14,
Wilcoxon signed-rank test).We notice that larger gene sets are eas-

ier to match across organisms (Fig. 5B). We speculate that having
more genes can result in more distinct patterns in the embedding
space, leading to better mappings, especially for ANDES and the
mean embedding method. Meanwhile, the mean score and cor-
rected t-score methods are not able to take advantage of the addi-
tional information in larger gene sets and perform similarly. The
mean embedding method performs poorly when the gene sets
are small; this is likely because “outlier” genes can more easily
skew the mean embedding, especially when there are distinct sub-
processes within a gene set. Overall, ANDES is the only method
that is a strong performer, consistently robust to gene set size.

So far, we have simplified the relationship between a pair of
gene sets to simply “matched” or “unmatched,” but we can also
evaluate unmatched terms based on how close they are to the cor-
rect target term in the ontology tree. To this end, we use the
Resnik’smeasure (Resnik 1999), a semantic similaritymeasure lever-
aging theGOhierarchy, to quantify the similarity between twogene
sets. Two gene sets that are close in the GO are more likely to
describe functionally similar biological processes and, therefore,
have a higher Resnik’s score. Comparing predicted similarities for
all gene sets between human and mouse, we calculate the cumula-
tive average Resnik’s score of gene set pairs ranked by their similarity
score in each set comparison method. Across all methods, the
Resnik’s score is higher for the top-ranked pairs and gradually con-
verges to randomness at around 30% of the ranked list of all pairs
(Fig. 5C). The trend also holds for D. melanogaster and C. elegans
(Supplemental Fig. S18). Overall, ANDES consistently has the high-
est Resnik’s scores of all methods, demonstrating that it both iden-
tifies the exact match as well as other functionally related gene sets.

A

B C

Figure 5. ANDES estimates gene set functional similarity across organisms better than existing meth-
ods. (A) Boxplot of the ranking of matched GO terms between human and three model organisms:
M. musculus, D. melanogaster, and C. elegans, with 213, 40, and 43 shared GO slim terms, respectively.
To facilitate comparison between organism pairs, the ranking is normalized by the number of shared GO
terms. For each of the three organisms, ANDES consistently outperforms the mean embedding, correct-
ed t-score, and mean score methods. (B) Boxplot of the ranking of matched GO terms for Homo sapiens
andM. musculus. Gene set pairs are grouped into two categories according to the sum of the number of
genes in both gene sets (small [10–100] and large [101–300]). ANDES again consistently outperforms
othermethods regardless of gene set size. (C ) Comparison of the cumulative average of the Resnik’s score
walking down the ranked list for H. sapiens and M. musculus. ANDES consistently outperforms other
methods until the score converges at ∼30% of all pairs.
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Prioritizing mouse phenotypes for modeling human diseases

with ANDES

After verifying that ANDES can recover conserved cross-organism
functional signal (Fig. 5), we further explore the potential of
ANDES for cross-organism knowledge transfer. Phenotype pri-
oritization is a vital aspect of effective knowledge transfer as
some small phenotypic changes in the model organism (e.g.,
“decreased cervical vertebrae”) can be an important marker of
the presence or extent of a human disease phenotype. Good
matches here can be potential candidates for phenotypic screens.
Toward this end, we systematically test associations between
human disease gene sets from OMIM (Hamosh et al. 2005) and
mouse phenotype gene sets from Mouse Genome Informatics
Phenotypes (MGI) (Eppig et al. 2017).We identify a range of signif-
icantly related disease-phenotype pairs, many of which merit fur-
ther exploration (Supplemental Figs. S19–S41). As a proof of
concept, we show a smaller slim set of 13 human diseases that
span a wide range of organ systems and pathological mechanisms,
along with the top 5 associated mouse phenotypes (Fig. 6).

Although we do not have clear gold standards to evaluate
mouse phenotype-human disease predictions, many of the dis-
ease-phenotype pairs we find make intuitive sense. Specifically,
we find that diseases tend to cluster with ones that involve similar
organ systems (e.g., combined immunodeficiency and autoim-
mune disease) (Fig. 6). Furthermore, phenotypes related to lym-
phocytes are associated with both immune diseases and
leukemia, whereas “abnormal neuromuscular synapse morpholo-
gy” is shared between neuropathy, epilepsy, and amyotrophic lat-
eral sclerosis. Moreover, phenotype associations can also reflect
differences between diseases related to the same organ system.

Both epilepsy and intellectual disability’s top related phenotypes,
“impaired conditioning behavior” (Holley and Lugo 2016), but
seizure phenotypes are specific to epilepsy.

We also find that ANDES can capture both direct and second-
ary associations between human diseases and mouse phenotypes.
For example, diabetes mellitus is related to the mouse phenotype
“small pancreatic islets,” capturing the fact that these cells produce
insulin (Fig. 6). Furthermore, anemia, a diseasewithmany variants
that affect red blood cells, is enriched for the mouse phenotype,
“anisopoikilocytosis,” a disorder where red blood cells have irreg-
ular sizes and shapes. ANDES can also identify secondary disease
phenotypes not directly caused by the disease itself. For example,
hypothyroidism is enriched in mouse phenotypes related to the
brain and nervous system, which is a phenotype known to be as-
sociated with thyroid disease in humans (Khaleghzadeh-Ahangar
et al. 2022). Together, these results highlight the exciting potential
of ANDES to not only model existing human–mouse phenotype
mappings, but also identify new translational opportunities to
aid in developing newmodel organism screens for specific human
disease phenotypes.

Discussion

Here, we introduce ANDES as a general-purpose method for com-
paring sets by considering best-match elements. In exploring
ANDES’ application to gene embeddings, we have demonstrated
how it can be used to prioritize functionally similar gene sets with-
in a single organism or across organisms using more sophisticated
joint embeddings. ANDES can leverage functional information
from gene embeddings to avoid a complete reliance on gene

Figure 6. Heatmap of ANDES similarity scores for human disease and mouse phenotype gene sets. Gene set similarity Z-scores generated by ANDES are
shown for 13 selected human diseases across various organ systems and pathological pathways. For each human disease, the top five mouse phenotypes
predicted to be functionally similar are selected (62mouse phenotypes). The intensity of color indicates the extent towhich disease-phenotype associations
exceed Z-score = 1.64 (corresponding to P-value = 0.05).
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annotations in both overrepresentation- and rank-based GSEA,
and by doing so, achieves state-of-the-art performance. Unlike cur-
rent embedding set similarity methods that rely on averaging,
ANDES identifies the best matches between individual elements
in a set, thus considering the diversitywithin a set to better capture
inherent substructure that may be otherwise lost.

One limitation of our best-match approach is that it could po-
tentially be sensitive to outliers. ANDES currently addresses this by
combining information from all best-matching pairs and estimat-
ing statistical significance using cardinality-aware null distribu-
tions. But beyond these strategies, we note that we can also
expand the ANDES framework to consider the top k matches per
gene instead. The argument for usingmorematching genes would
be to diminish the effect of outliers in driving the assessment of set
similarity. This framing would place the best-match and mean
score approaches at two ends of the spectrum with respect to
choosing k, as k=1 (a single element) is by definition the best-
match approach, and k=100% (all elements in both gene sets) is
equivalent to the mean score approach. A cursory exploration of
the effect of varying k onANDES’ performance shows that the abil-
ity to identify functionally similar GO and KEGG gene sets using
node2vec-embedded PPI networks decreases as k increases, eventu-
ally converging to the significantly lower mean score performance
(Supplemental Fig. S42). Thus, at least with PPI embeddings, we
find that using the best-match approach (i.e., k=1) can avoid the
introduction of an additional hyperparameter and performs well
in practice. In other situations where outliers are of particular con-
cern, itmay bemoreworthwhile to examine the effect of varying k.

Another key aspect of ANDES is the similarity metric used to
determine the best matches. ANDES currently uses cosine similar-
ity, but there are of course several possible alternatives, two natural
ones being Euclidean distance and Pearson’s correlation. We find
that using (inverse) Euclidean distance as the similarity metric re-
sults in the largest performance drop (Supplemental Fig. S43), like-
ly due to the sensitivity of Euclidean distance to themagnitudes of
the gene embeddings. Overall, the performance is similar when us-
ing the two scale-invariant methods (cosine similarity and
Pearson’s correlation), though cosine similarity performs slightly
better and would be our generally recommended metric.

Our novel ANDES framework has a myriad of downstream
applications, especially when paired with different embeddings.
Here, we only scratch the surface by showing the potential of
ANDES for function prediction and drug repurposing when paired
with ahumangene embedding space, aswell as cross-organism func-
tional knowledge translation taskswhenpairedwith a joint gene em-
bedding. By matching phenotypes across human and mouse, we
provide additional insight into opportunities for improved transla-
tional studies.We anticipatemore interesting use caseswithdifferent
gene embeddings or even embeddings of an entirely differentmodal-
ity. Furthermore, although we have analyzed several methods for
generating PPI-based gene embeddings, integratingmore gene infor-
mation beyond PPIs may yield further improved gene set matching.

For example, genetic interaction (Dixon et al. 2009), coex-
pression (Obayashi et al. 2023), and functional networks (Yao
et al. 2018) can capture additional, complementary information
with respect to gene functional similarity. Furthermore, because
ubiquitously expressed genes can give rise to different disease-sus-
ceptibility and phenotypes in different tissues (Hekselman and
Yeger-Lotem 2020), using tissue-specific network models as input
to ANDES could bring additional depth to the analyses and lead to
new biological insights. We explore the possibility of extending
ANDES’ enrichment analyses with tissue-specific functional net-

works (Greene et al. 2015), considering data sets from
GEO2KEGG from five diseases: chronic obstructive pulmonary dis-
ease (PDCO), kidney renal clear cell carcinoma (KIRC), pancreatic
adenocarcinoma (PAAD), Alzheimer’s disease (ALZ), and acutemy-
eloid leukemia (LAML), with their corresponding tissue-specific
networks (lung, kidney, pancreas, brain, and blood, respectively).
We find that using the tissue-specific networks consistently im-
proves the enrichment for PDCO, KIRC, and PAAD. However,
used directly, they do not result in much performance improve-
ment on the ALZ and LAML data sets (Supplemental Fig. S44).
For the LAML data sets, the CD8 samples in the NCBI Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
GSE14924 data set seem to benefit slightly from using the blood
tissue network whereas the CD4 samples from the same data set
perform worse. These results suggest that the general blood tissue
networkmaybetter capture andhighlightCD8-related T cell signal
rather than CD4 signal. In general, we reason that brain and blood
may exhibit more regional and cell specificity with differing impli-
cations for disease, and thus using the general brain or blood tissue
networks may not be specific enough to highlight the signal for
ALZ and LAML. In these cases, more fine-grained tissue networks
could bemore beneficial. For example, Alzheimer’s disease model-
ing could benefit from using an entorhinal cortex network
(Roussarie et al. 2020) and likewise for leukemia.

Beyond enrichment and set matching tasks, ANDES can also
potentially be used to evaluate the quality of different embeddings
when some set relationships are known a priori. In the gene embed-
ding case, embedding spaces constructed in different ways might
highlight different gene attributes. Analyzing known similarities
(e.g., pathways, gene function, etc.) and how gene set matching
changes might yieldmore unique insights into the information en-
coded in the latent space. A related extension for ANDES would be
to further identify the best-match scores that drive different set
matching results, thus providing gene-level insights for downstream
analyses, similar to hownetwork representations are used to provide
functional insights for individual genes in Ietswaart et al. (2021).

Though we focus primarily on the utility of ANDES for gene
embeddings, conceptually, ANDES’ best-match approach can be
applied to any set comparisons as long as a corresponding similar-
itymatrix for set elements exists, regardless of whether the input is
an embedding representation. For PPI networks, we have found
that embedding representations are better able to prioritize func-
tionally similar gene sets than using the nonembedded network
or network properties as input (Fig. 2; Supplemental Fig. S2), but
there could be alternative scenarios where the end-user is specifi-
cally interested in exploring set similarity using the nonembedded
representation. In addition, by expanding the types of entities
ANDES can be applied to, we foresee exciting applications for im-
proved interpretability in other domains, such as protein language
models (Rives et al. 2021; Villegas-Morcillo et al. 2022;Weissenow
et al. 2022) and single-cell embeddings (Liu et al. 2019; Zhao et al.
2021; Chen et al. 2024).

In conclusion, herewe have presented a novel algorithm for set
comparisons, ANDES, that can improve the utility and interpretabil-
ity of analyses using embedding spaces. We hope that our best-
match framework, paired with various embeddings, will be widely
adopted and further adapted for additional novel use cases.

Methods

As depicted in Figure 1A, a single gene set can comprise a mixture
of different biological processes scattered throughout the
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embedding space. ANDES considers similarity while reconciling
gene set diversity when measuring the relationship between two
gene sets. Specifically, for each gene in a gene set, the method fo-
cuses on the “best-matching” gene (i.e., closest gene) in the other
set, allowing ANDES to quantify the presence of functionally sim-
ilar genes between the sets. The mean of these best-match scores
represents the similarity between two gene sets. Finally, to enable
systematic comparisons across different gene set pairs, background
correction with an estimated null distribution is applied to stand-
ardize the scores.

Calculation of the ANDES gene set similarity score

Given a low dimensional gene representation E∈Rn×d, where n is
the number of genes and d is the embedding dimension, ANDES
computes a pairwise similarity score between every pair of genes
in the embedding. Here, we use cosine similarity, as it measures
the angle between two vectors rather than only the distance and
is scale-invariant, which means that it is not affected by the mag-
nitude of the initial vector. Thismagnitude-invariance is an attrac-
tive feature because we find that the magnitude of embedding
vectors is negatively correlated with the degree of the correspond-
ing vertex in all three embedding methods used in our compari-
sons (Supplemental Fig. S45). Though degree has been shown to
be a meaningful network property that relates to gene function,
it can also capture study bias and is thus not preferable.
Formally, S= cos(E, E)∈Rn×n, where each entry Si,j of the matrix
represents the similarity between two genes i and j. For two gene
sets X= x1, x2, …, xm and Y= y1, y2, …, yk, where |X| =m and |Y| =
k, we define a similarity matrix forX and Y as A∈Rm×k, the subma-
trix of S with the corresponding entries matching genes from X
and Y as rows and columns, respectively. The gene set similarity
score (GS) is defined as:

GS =

∑m
i=1

max1≤j≤kAij +
∑k
j=1

max1≤i≤mAij

m+ k
. (1)

ANDES thus finds the best match for every gene in setX from set Y
and vice versa. A large GS means most of the genes from X and Y
can find similar genes to each other in the embedding space and
are more likely to involve similar processes.

Estimation of null distribution and statistical significance

ANDES uses an asymptotic approximation of Monte Carlo sam-
pling to calculate a statistical significance score for every pair of
gene sets. This procedure facilitates the comparison between dif-
ferent gene set pairs with varying numbers of genes (cardinalities).
Because ANDES uses themax operator, this step is particularly cru-
cial. In contrast to themean operation, whichhas the same expect-
ed value for different random samples drawn from a Gaussian
distribution, the expected maximum value will increase as set car-
dinality grows. Therefore, an appropriate cardinality-aware null
distribution is essential for ANDES to eliminate bias resulting
from varied gene set sizes.

The null distribution of the ANDES score between a pair of
gene sets is approximated by 1000 Monte Carlo samples, where
each of the two sets has the same cardinality as the original pair.
A restricted background gene list helps prevent the statistical sig-
nificance of gene set similarities from becoming artificially inflat-
ed. Whereas in most cases, the background can be all genes in the
embedding, E, for systematic comparisons with a target annota-
tion database (e.g., GO), we use a more conservative background
gene list that includes only genes that are in both the embedding
and the target annotation database (e.g., genes with at least one

GO annotation). To balance power and computational cost, we
use a normal asymptotic approximation to estimate a Z-score:

z(GS) = GS− m0

s0
, where μ0 and σ0 are the mean and standard devia-

tion of the Monte Carlo approximations of the null distribution.
Because GS and z(GS) can be used directly to quantify embed-

ding-aware gene set similarities, they can be applied directly to
gene set enrichment via overrepresentation analyses. In compari-
son with the standard Fisher’s exact test that is typically used for
such comparisons, the immediate advantage of ANDES is that
the overrepresentation analyses can identify significantly “relat-
ed” gene sets even in the scenario where two gene sets of interest
have completely no overlap.

ANDES as a rank-based gene set enrichment method

In addition to overrepresentation analyses, we apply the best-
match concept to develop a novel rank-based gene set enrichment
method that considers distances between sets in gene embedding
spaces.

Given a ranked gene list L = g1, g2, . . . , gl and a gene set of in-
terest Y= y1, y2,…, yk, we define the similaritymatrix for L and Y as
A∈Rl×k, a submatrix of similarity matrix Swith the corresponding
entries matching genes from L and Y as rows and columns,
respectively.

The best-match gene set enrichment score is

ES = maxdev
1≤i≤l

∑
1≤t≤i

max
1≤j≤k

Atj − 1
l

∑l

r=1

max
1≤j≤k

Arj

( )( )
, (2)

where maxdev is themaximumdeviation from 0 and
1
l

∑l

r=1

max
1≤j≤k

Arj

is the mean of all best-match scores from L to Y. At each position i
in L, ANDES is thus calculating the cumulative sum of mean-cor-
rected best-match scores from genes g1, g2, …, gi to genes in Y. As
such, ES reflects the extent towhich genes inY are close (in embed-
ding space) near the extremes (top or bottom) of the ranked gene
list L. In this way, there are some similarities to the running-sum
calculation used in the GSEA method (Subramanian et al. 2005),
which updates an enrichment score based on the fraction of
gene “hits” and “misses” as L is traversed. Similar to the limitation
with Fisher’s exact test, GSEA only considers genes in L that have
direct annotations in Y. The best-match approach that ANDES
takes is able to consider the extent to which each gene in L is close
to genes in Y, even if it does not have a direct annotation.

To assess the significance of ES for a given gene set Y, ANDES
uses an approach similar to that described above to calculate a nor-
malized enrichment score (NES) through Monte Carlo sampling
and asymptotic approximation, ensuring that the random gene
sets have the same cardinality as Y. Systematic comparisons
against a target annotation database, such as GO, also use the
more conservative background gene list (e.g., genes with at least
one GO annotation).

Gene embeddings using a protein–protein interaction network

Althoughour proposed framework is agnostic to embeddingmeth-
od and data type, here we focus on gene embeddings generated
from PPIs. We use our previously assembled consensus PPI net-
work (Dannenfelser and Yao 2024), which considers physical in-
teraction information from eight different data sources, resulting
in an unweighted and undirected network of 20,363 genes (verti-
ces) and 822,311 interactions (edges). We compare three different
embedding approaches: node2vec (Grover and Leskovec 2016),
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NetMF (Qiu et al. 2018), and a structure-preserving autoencoder
method based on the architecture in Li et al. (2023), which we ab-
breviate as the NN approach. Each method takes a different ap-
proach to embed the gene relationships characterized by the PPI
network. Node2vec uses random walks on the graph, followed
by the skip-grammodel to embed node relationships. NetMF gen-
erates latent representations by solving a closed-form matrix fac-
torization problem. Lastly, NN uses an autoencoder backbone
with the following objective function:

L = BCE(sigmoid(M̂), M)+ BCE(cos(Z, Z), A)⊙ A+ l1L2

+ l2Lnorm, (3)

where A is the adjacency matrix, Z is the gene embedding matrix,
M is the NetMF matrix, and BCE is binary cross entropy. The L2
norm on the autoencoder parameters is included to avoid overfit-
ting and Lnorm = ∑n

i=1 ‖ zi ‖22 to avoid exploding norms. By opti-
mizing this objective function, the NN preserves the global and
local structural information simultaneously. We fix the embed-
ding dimension sizes from all three methods to 128.

Gene embeddings using tissue-specific functional networks

We use five human tissue-specific functional networks (lung, kid-
ney, pancreas, brain, and blood) fromGIANT (Greene et al. 2015),
downloaded fromhumanbase.io. Specifically, we use the “top edg-
es” (edges with evidence supporting a tissue-specific functional in-
teraction) as input to build the embeddings. To better use the
weighted edge information in tissue-specific networks, we use
PecanPy’s (Liu and Krishnan 2021) efficient node2vec+ (Liu et al.
2023) implementation. Node2vec+ is an extension of the node2-
vec method that demonstrates consistently strong performance
in our benchmarks; the node2vec+ extension considers input
edge weights during the random walk sampling process and thus
is able to more fully take advantage of the functional networks.

Gene set processing

For benchmarking, we use curated gene sets describing pathways,
functions, tissues, diseases, phenotypes, and drugs. We describe
the gene sets and processing in the sections below.

GO: To assess gene function, we use the biological process an-
notations from GO (Gene Ontology Consortium 2004) (July 16,
2020). To ensure high-quality annotations, we only keep terms
with low-throughput experimental evidence codes (EXP, IDA,
IMP, IGI, and IEP). Furthermore, to avoid any circularity with
the underlying PPIs used to construct embeddings, we exclude
terms with evidence code IPI (inferred from physical interaction).
We further restrict the total number of GO terms using an expert-
curated set of slim terms designed to emphasize key biological pro-
cesses (Greene et al. 2015). Leveraging the directed acyclic graph
structure of the ontology, we propagate gene annotations from
child terms to parent terms based on annotated “is a” and “part
of” relationships; parent terms thus also contain genes that partic-
ipate inmore specific (child term) processes. After propagation, we
apply a final filter to preserve terms with more than 10 and fewer
than 300 annotated genes.

KEGG: We obtain pathway gene sets from KEGG (Kanehisa
and Goto 2000) using ConsensusPathDB (Kamburov et al. 2013).
In total, we obtain 333 unique human pathway gene sets.

OMIM: We collect disease gene sets from OMIM (October
2023) (Hamosh et al. 2005). These gene sets are then mapped to
Disease Ontology (Schriml et al. 2012) and propagated through
the ontology structure, resulting in 284 unique disease gene sets.

MGI: We assemble mouse phenotype gene sets from MGI
(March 2022) (Eppig et al. 2017). After propagating genes from
children to parents, we obtain 3738 mouse phenotype gene sets.

DrugBank: Drug target information for 725 drugs, as well
as other descriptions, such as ATC codes, were parsed from
the academic licensed version of DrugBank (Wishart et al. 2018)
(Jan 2023).

Benchmarking gene set similarity metrics in embedding spaces

Themost straightforward way to compare sets in embedding space
is to summarize their similarity through averaging. We compare
ANDES with two variants of averaging (mean score and mean em-
bedding) as a benchmark along with a corrected t-score approach
(Greene et al. 2015).

Given two gene set embeddings X∈Rm×d and Y∈Rk×d, where
m and k are the number of genes in the set and d is the embedding
dimension, themean scoremethod first calculates the pairwise co-
sine similarity Swhere Sij = cos(�xi, �yj), where �xi is the ith row vector
of X and �yj is the jth row vector of Y. The mean score method then

simply computes the mean of these similarities,
1
mk

∑m
i=1

∑k
j=1

Sij.

Themean embedding approach instead first takes the average
within a gene set, resulting in two gene set-level pooled embed-
dings �p and �q, where

�p = 1
d

∑d
j=1

X1j

∑d
j=1

X2j

. . .
∑d
j=1

Xmj

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�q = 1
d

∑d
j=1

Y1j

∑d
j=1

Y2j

. . .
∑d
j=1

Ykj

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The final mean embedding score is the cosine similarity between
the gene set-level pooled embeddings, cos(�p, �q).

The corrected t-score method (Greene et al. 2015) calculates
an unequal variance t-test on two score distributions: the pairwise
similarity score between two gene sets (between) and the scores as-
sociated with cardinality-matched gene sets across the genome
(background). The final score is determined by comparing the be-
tween scores against a null distribution of the background scores.

We explore two gene set matching evaluations: (1) matching
paired functional annotation data sets (KEGG and GO) with each
other and (2) matching GO gene sets across different model organ-
isms. For the matched KEGG and GO comparisons, annotations
for 50 KEGG pathways to corresponding GO biological processes
are obtained based on the external database annotations from the
KEGG web portal. To assess the ability to capture functional similar-
ity beyond overlapping genes, we remove all overlapping genes be-
tween the KEGG- and GO-matched gene sets from GO gene sets
when evaluating each method. In addition to comparing the differ-
ent embedding methods using this evaluation paradigm, we also
evaluate several baseline approaches that capture gene similarity
based directly on the original PPI network, including shared neigh-
bor profiles, graphdiffusion (heat diffusionaswell as exponential dif-
fusion), and node degree. For the shared neighbor profile baseline,
we use the Jaccard index of shared neighbors between a pair of genes
as ameasure of functional similarity. The heat diffusion analysis uses
a diffusion step of 0.1 as recommended by Vandin et al. (2012).
Exponential diffusion and node degree constitute the most naive
similarity approaches, where node degree is simply using the sum
of a pair of genes’ degrees in the PPI as a measure of similarity.

For the cross-species evaluation, we look for exact matches
between the same GO slim term in humans versus three model

Li et al.

1430 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on October 11, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


organisms: M. musculus, Saccharomyces cerevisiae, and D. mela-
nogaster. Although cross-species GO annotations can capture
conserved biological processes, we need updated embedding spac-
es that jointly model genes from both species. To that end, we use
our previously developed method, ETNA (Li et al. 2023), to con-
struct pairwise gene embedding spaces for human and each of
the three model organisms. ETNA uses an autoencoder approach
to generate within-species network embeddings based on PPI net-
works, then uses a cross-training approach with known ortholo-
gous genes as anchors to align the two embeddings into a joint
embedding. This joint embedding enables cross-species compari-
sons of all genes represented in each PPI network.

Evaluating gene set enrichment methods

To evaluate ANDES’ ability to identify functionally relevant path-
ways in an enrichment analysis setting, we use a gold standard
compendium of pathway-annotated gene expression data,
GEO2KEGG, that has been routinely used for benchmarking
gene set enrichment analyses (Tarca et al. 2012, 2013; Cousins
et al. 2023). GEO2KEGG consists of 42 humanmicroarray profiles
matched to various diseases, each of which has a set of curated
KEGG pathway annotations. Using the corresponding annotated
KEGG pathways as a gold standard, we can then calculate
AUPRC for each of the 42 data sets. We compare the results of
ANDES against three existing gene set analysismethods: hypergeo-
metric test (Hahne et al. 2008), GSEA (Subramanian et al. 2005),
and GSPA (Cousins et al. 2023). We are unable to use NGSEA
(Han et al. 2019) and EnrichNet (Glaab et al. 2012) for this bench-
marking analysis because only web portals are available, with no
ability to change the underlying gene sets for a fair comparison
across methods. We note that GSPA does report that they outper-
form both NGSEA and EnrichNet. The comparison with the
hypergeometric test uses ANDES’ gene set similarity score and stat-
istical significance calculation, taking genes with FDR≤0.05.
Comparisons with rank-based gene set enrichment methods use
ANDES’ best-match-based enrichment method, where the input
gene list is ranked using log2(fold change).

To calculate empirical P-values to correct for potential biases
in the amount of differential expression signal in the original
data set, we generate null distributions for each data set with at
least 10 samples in both normal and diseased conditions
(21 data sets total) by permuting the sample labels 100 times.
We include only data sets with at least 10 normal and 10 diseased
samples to ensure more consistency across permutations. Using
ANDES scores calculated on the data sets with permuted labels,
we can then compute empirical P-values for each KEGG term
and expression data set pair by comparing the ANDES score based
on the true data set.

Software availability

Our implementation of ANDES and code for the analysis described
herein is available on GitHub (https://github.com/ylaboratory/
ANDES), released under the BSD 3-clause license for open source
use, and also included as Supplemental Code.
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